Advertisement

Some asymptotic properties of the linearized maximum likelihood estimate and best linear unbiased estimate

  • Lai K. Chan
Article

Keywords

Order Statistic Asymptotic Property Fisher Information Matrix Bivariate Normal Distribution Fixed Integer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bennett, C. A. (1952). Asymptotic properties of ideal linear estimators, Ph.D. Dissertation, University of Michigan, Ann Arbor, Michigan, U.S.A.Google Scholar
  2. [2]
    Bickel, P. J. (1965). Some contributions to the theory of order statistics, Fifth Berkeley Symposium,I, 575–591.Google Scholar
  3. [3]
    Blom, G. (1958).Statistical Estimates and Transformed Beta Variables, Wiley, New York.MATHGoogle Scholar
  4. [4]
    Chan, L. K. (1967). Remark on the linearized maximum likelihood estimate,Ann. Math. Statist.,38, 1876–1881.MATHMathSciNetGoogle Scholar
  5. [5]
    Chernoff, H., Gastwirth, J. L. and Johns, M. V. Jr. (1967). Asymptotic distribution of linear combinations of functions of order statistics with applications to estimation,Ann. Math. Statist.,38, 52–71.MATHMathSciNetGoogle Scholar
  6. [6]
    Halperin, M. (1952). Maximum likelihood estimation in truncated samples,Ann. Math. Statist.,23, 226–238.MATHMathSciNetGoogle Scholar
  7. [7]
    Hammersley, J. M. and Morton, K. W. (1954). The estimation of location and scale parameters,Biometrika,41, 296–301.MATHMathSciNetCrossRefGoogle Scholar
  8. [8]
    Lloyd, E. H. (1952). Least squares estimation of location and scale parameters using order statistics,Biometrika,39, 88–95.MATHMathSciNetCrossRefGoogle Scholar
  9. [9]
    Plackett, R. L. (1958). Linear estimation from censored data,Ann. Math. Statist.,29, 351–360.MathSciNetGoogle Scholar
  10. [10]
    Särndal, C. K. (1962).Information from Censored Samples, Almquist & Wiksell, Uppsala, Sweden.MATHGoogle Scholar
  11. [11]
    Weiss, L. (1964). On estimating location and scale parameters from truncated samples,Naval Res. Logist. Quart.,11, 125–133.MATHMathSciNetGoogle Scholar

Copyright information

© Institute of Statistical Mathematics 1971

Authors and Affiliations

  • Lai K. Chan
    • 1
  1. 1.University of Western OntarioCanada

Personalised recommendations