Some asymptotic properties of the linearized maximum likelihood estimate and best linear unbiased estimate

  • Lai K. Chan


Order Statistic Asymptotic Property Fisher Information Matrix Bivariate Normal Distribution Fixed Integer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bennett, C. A. (1952). Asymptotic properties of ideal linear estimators, Ph.D. Dissertation, University of Michigan, Ann Arbor, Michigan, U.S.A.Google Scholar
  2. [2]
    Bickel, P. J. (1965). Some contributions to the theory of order statistics, Fifth Berkeley Symposium,I, 575–591.Google Scholar
  3. [3]
    Blom, G. (1958).Statistical Estimates and Transformed Beta Variables, Wiley, New York.MATHGoogle Scholar
  4. [4]
    Chan, L. K. (1967). Remark on the linearized maximum likelihood estimate,Ann. Math. Statist.,38, 1876–1881.MATHMathSciNetGoogle Scholar
  5. [5]
    Chernoff, H., Gastwirth, J. L. and Johns, M. V. Jr. (1967). Asymptotic distribution of linear combinations of functions of order statistics with applications to estimation,Ann. Math. Statist.,38, 52–71.MATHMathSciNetGoogle Scholar
  6. [6]
    Halperin, M. (1952). Maximum likelihood estimation in truncated samples,Ann. Math. Statist.,23, 226–238.MATHMathSciNetGoogle Scholar
  7. [7]
    Hammersley, J. M. and Morton, K. W. (1954). The estimation of location and scale parameters,Biometrika,41, 296–301.MATHMathSciNetCrossRefGoogle Scholar
  8. [8]
    Lloyd, E. H. (1952). Least squares estimation of location and scale parameters using order statistics,Biometrika,39, 88–95.MATHMathSciNetCrossRefGoogle Scholar
  9. [9]
    Plackett, R. L. (1958). Linear estimation from censored data,Ann. Math. Statist.,29, 351–360.MathSciNetGoogle Scholar
  10. [10]
    Särndal, C. K. (1962).Information from Censored Samples, Almquist & Wiksell, Uppsala, Sweden.MATHGoogle Scholar
  11. [11]
    Weiss, L. (1964). On estimating location and scale parameters from truncated samples,Naval Res. Logist. Quart.,11, 125–133.MATHMathSciNetGoogle Scholar

Copyright information

© Institute of Statistical Mathematics 1971

Authors and Affiliations

  • Lai K. Chan
    • 1
  1. 1.University of Western OntarioCanada

Personalised recommendations