Skip to main content
Log in

Constitutive relations for split cylinder tests on bituminous concrete

  • Published:
Matériaux et constructions Aims and scope Submit manuscript

Abstract

The scope of this progress report was to a determine the constitutive relations for asphaltic concrete using the split cylinder test for two percents of bitumen, and b. compare the results with uniaxial tensile data on asphaltic concrete to assess the suitability of the split cylinder test for routine material characterizations. A special digital computer routine was used to reduce the experimental data, develop the constitutive relations, and perform the statistical analysis. Using the procedures reported here, the split cylinder tests, compared with uniaxial tension tests, overestimated the strain at high rates of loading, underestimated at very low rates of loading, and the ultimate strain values for the two test methods were the same for a value of R of about 0.1%/min. The split cylinder test underestimated the ultimate tensile stress by about one-half an order of magnitude for all values of strain rate that would be used in highway work.

Résumé

L'objet de ce rapport d'activité était a) de déterminer les relations caractéristiques pour le béton asphaltique à 2% de bitume soumis à l'essai de fendage et b) de comparer les résultats avec ceux obtenus par l'essai de traction afin d'établir l'aptitude de l'essai de fendage aux contrôles de routine du matériau. On s'est servi d'un calculateur numérique spécial pour dépouiller les résultats expérimentaux, développer les relations caractéristiques et accomplir l'analyse statistique. En appliquant les procédés ici décrits les essais de fendage comparés aux essais en traction pure donnent une surévaluation de la déformation pour les charges rapidement appliquées et une sous-évaluation pour les charges très lentement appliquées; les valeurs de déformation ultime obtenues pour les deux méthodes sont les mêmes pour une valeur de R (vitesse de déformation) d'environ 9,1%/min. L'essai de fendage sous-évalue la résistance ultime en traction, d'environ la moitié de la valeur à l'origine de cette dernière (cf. fig. l), pour toutes les valeurs de R susceptibles d'être utilisées dans les travaux routiers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A, B:

Constants in constitutive relations

CEM:

Constant strain modulus psi

CERM:

Constant strain rate modulus psi

COC:

Coefficient of correlation percent

CSC:

Constant stress compliance 1.0/psi

CSRC:

Constant stress rate compliance 1.0/psi

D:

Specimen diameter in.

E:

Young's modulus psi

E:

Ultimate strain percent

E0 :

Static strain in./in.

N:

Number of specimens tested numeric

P:

Applied force lb.

Q:

Stress rate psi/min.

R:

Strain rate percent/min.

S:

Ultimate stress psi

SEC:

Ultimate secant modulus ksi

S0 :

Static stress psi

SGT:

Theoretical specific gravity numeric

SGW:

Specific gravity from weights in air and in water numeric

STUDT:

Values from Studentt test numeric

T:

Time min.

t :

Specimen thickness in.

TAN:

Initial tangent modulus ksi

TTF:

Time to failure min.

V:

Vertical deformation of specimen in.

VSGW:

Void content based on SGT and SGW percent

x, y :

Distance from center of specimen on horizontal and vertical axes in.

σ x , σ y :

Principal stresses inx andy direction psi

ɛ X0 :

Principal strain inx direction at center of specimen in./in

References

  1. Fleisher, H. O., Bynum, D., Jr. andRay, D. R.Data Reduction, Constitutive Relations, Statistical Analysis, and Moduli Conversions for Viscoelastic Material Characterizations. Special Report, Sep. 1970, T.T.I.) (Texas Transportation Institute, Texas A. and M. University, College Station, Texas 77843).

  2. Bynum D., Jr,Fleisher, H. O., Evertson, J. F. andSartori, M. P.Constitutive Relations for Uniaxial Tests on Flexible Concrete. Australian Road Research Journal (in press).

  3. Carneiro, F. L. L. B. andBarcellos, A.Tensile Strength of Concretes. R.I.L.E.M. Bulletin No. 13, Mar. 1953, pp. 99–125.

    Google Scholar 

  4. Akazawa, T.Tension Test Method for Concretes. R.I.L.E.M. Bulletin No. 16, Nov. 1953, pp. 13–23.

    Google Scholar 

  5. Addinall, E.Study with Particular Reference to Testing of Brittle Materials of the Brazilian Test and Ring Text. Journal of Civil Engineering and Public Work Review, Vol. 60, No. 708, July 1965, p. 1056.

    Google Scholar 

  6. Mitchell, N. B. Jr.—The Indirect Tension Test for Concrete. Journal of Materials Research and Standards, Oct. 1961, p. 780.

  7. Franca, G. de Carvalho andPincus, George. —The Distribution of Concrete Strains in the Split Cylinder Test. Journal of Materials, Vol. 4, No. 2, June 1969, p. 393.

    Google Scholar 

  8. Malhotra, V. M. andZoldners, N. G.Comparison of Ring-Tensile Strength of Concrete with Compressive, Flexural, and Splitting-Tensile Strengths. Journal of Materials, Vol. 2, No. 1, Mar. 1967.

  9. Standard Method of Test for Splitting Tensile Strength of Molded Concrete Cylinders. A.S.T.M. Standards, Part. 10, 1966, p. 366.

  10. Messina, R.Split Cylinder Test for Evaluation of the Tensile Strength of Asphalt Concrete Mixtures, unpublished Thesis, Master of Science in Civil Engineering, The University of Texas, Austin, Texas, Jan. 1966.

    Google Scholar 

  11. Breen, J. J. andStephens, J. E.Split Cylinder Test Applied to Bituminous Mixtures at Low Temperatures. Journal of Materials, Vol.1, No. 1, Mar. 1966.

  12. Breen, J. J. andStephens, J. E.Fatigue and Tensile Characteristics of Bituminous Pavements at Low Temperatures. Report No. JHR 66-3, School of Engineering, University of Connecticut, July 1966.

  13. Livneh, M. andShklarsky, E.The Splitting Test for Determination of Bituminous Concrete Strength, A.A.P.T., Vol. 31, 1962, pp. 457–476.

    Google Scholar 

  14. Hudson, W. Ronald, Kennedy, Thomas W.An Indirect Tensile Test for Stabilized Materials. Research Report No. 98-1, University of Texas, Austin, Texas, Jan, 1968.

    Google Scholar 

  15. Bynum, D. Jr,Evertson, J. F., Fleisher, H. O. andRay, D. R.Constitutive Relations for Bituminous Concrete Using Double Lap Shear Tests. Submitted to Materials and Structures.

  16. Goode, J. F. andLufsey, L. A.A New Graphical Chart for Evaluating Aggregate Gradations. A.A.P.T., 1962, pp. 176–207.

  17. Jimenez, R. A.An Apparatus for Laboratory Investigations of Asphaltic Concrete Under Repeated Flexural Deformations. Ph. D. Dissertation, Jan. 1962, Texas A. and M. University.

  18. Bynum, D., Jr. andTraxler, R. N.Thermoviscoelastic Characterization of Temperature Abused Flexible Pavement. Res. Rep. 127-2, Aug. 1970, T.T.I.

  19. Smith, T. L.Ultimate Tensile Properties of Elastomers. I. Characterization by a Time and Temperature Independent Failure Envelope. Journal of Polymer Science, A.L., 1963, pp. 3597–3615.

  20. Alexander, R. L.Limits of Linear Viscoelastic Behavior of an Asphalt Concrete in Tension and Compression. Ph. D. Dissertation, Univ. of California, Berkeley, 1964.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The first accounts of the Split Cylinder Tests were published in 1953 in the former RILEM Bulletin—We are referring to papers by F. L. Carneiro and T. Akazawa. It was therefore normal that we should publish here the present article, in which the authors propose the “Constitutive Relations for Split Cylinder Tests on Bituminous Concrete”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bynum, D., Agarwal, R. & Fleisher, H.O. Constitutive relations for split cylinder tests on bituminous concrete. Mat. Constr. 4, 163–169 (1971). https://doi.org/10.1007/BF02479130

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02479130

Keywords

Navigation