Advertisement

Matériaux et Construction

, Volume 6, Issue 3, pp 215–225 | Cite as

Determination of pore-size distribution from freezing-point depression

  • G. Fagerlund
Article

Abstract

By utilising the effect of interfacial curvature on the freezing-point of liquids confined in capillaries, it is in principle possible to determine a pore-size distribution, from the curve of freezing-point against volume frozen. The method is formally similar to capillary condensation methods based on the Kelvin equation. Suitable experimental techniques are described. A comparison with the results of mercury porosimetry on a sample of brick shows reasonable agreement.

Keywords

Pore Water Pressure Sorption Isotherm Freezing Point Depression Adiabatic Calorimeter Relative Vapour Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Résumé

L’effet de la courbure interfaciale sur le point de congélation de liquides retenus dans des capillaires permet, en principe, de déterminer une distribution du diamètre des pores, d’après la courbe point de congélation/volume congelé. On procède à un examen des bases théoriques et l’on montre qu’il existe une similitude formelle avec les méthodes par condensation capillaire qui reposent sur l’équation de Kelvin. Quelques incertitudes théoriques subsistent, qui dépendent principalement du modèle défini adopté pour représenter les configurations de la glace, de l’eau et de l’air dans les pores; mais la comparaison entre les résultats expérimentaux et ceux que l’on peut déduire de la théorie permet de les éliminer. On examine également les effets des sels dissous et de l’hystérésis entre la fusion et la congélation. On décrit des techniques expérimentales appropriées, tant dilatométriques que calorimétriques. Les résultats s’accordent assez bien avec ceux obtenus sur un échantillon de brique par la porosimétrie au mercure.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bigg E.K.The supercooling of water. Proc. Phys. Soc., London, B 66 (1953), 688.CrossRefGoogle Scholar
  2. [2]
    Blachere J.R., Young J.E.The freezing point of water in porous glass. J. Amer. Ceram Soc., 55 (1972), 306.CrossRefGoogle Scholar
  3. [3]
    Croney D., Coleman J.D., Bridge P.M.The suction of moisture held in soil and other porous material, Road Res. Techn. Paper No. 24, London, Her Majesty’s Stat. Office, 1952.Google Scholar
  4. [4]
    Feldman R.F.Length change-adsorption relations for the water-porous glass system to −40°C. Canad. J. of Chem., 48 [2] (1970), 287.CrossRefGoogle Scholar
  5. [5]
    Gregg S.J., Sing K.S.W.Adsorption, surface area and porosity. Academic Press, London, 1967.Google Scholar
  6. [6]
    Anonymous.—Handbook of Chemistry and Physics. 45th Edition 1964–65. The Chemical Rubber Co.Google Scholar
  7. [7]
    Helmuth R.A.Capillary size-restrictions on ice-formation in hardened Portland cement-pastes. Proc. Vol. II, 4th, Int. Symp. Chem. of Cement, Washington, D.C. (1960), 855.Google Scholar
  8. [8]
    Hesstvedt E.The interfacial energy ice/water. Norwegian Geotechnical Institute, publ. No. 56, Oslo, 1964, 7.Google Scholar
  9. [9]
    Kubelka P.Über den Schnelzpunkt in sehr engen kapillaren. Ztschr. Elektrochem. Bd. 38 [8 a], (1932), 611.Google Scholar
  10. [10]
    Litvan G.G.Phase transitions of adsorbates: IV Mechanism of frost action in hardened cement paste. J. Amer. Ceram. Soc., 55 (1972), 38.CrossRefGoogle Scholar
  11. [11]
    Lœwenstein K.L.Glass systems. Composite materials, pp. 129–220. Elsevier Publ. Comp., Amsterdam/London/New York (1966).Google Scholar
  12. [12]
    Powers T.C., Helmuth R.A.Theory of volume changes in hardened Portland cement-paste during freezing. HRB. Proceedings 32 (1953), 285.Google Scholar
  13. [13]
    Powers T.C., Brownyard T.L.Physical properties of cement-paste. Res. Labs. Portl. Cem. Ass. Bulletin, 22, Chicago, 1948.Google Scholar
  14. [14]
    Powers T.C., Copeland L.E., Hayes J.C., Mann H.M.Permeability of Portland cement-paste. Proc. Amer. Concr. Inst., 51 (1954–55), 285.Google Scholar
  15. [15]
    Puri B.R., Sharma L.R., Lakhanpal K.L.Freezing-point of water held in porous bodies at different vapour pressures. J. Phys. Chem., 58 (1954), 289.CrossRefGoogle Scholar
  16. [16]
    Schofield R.K.The pF of water in soil, 3 rd. Int. Congr. Soil. Sci., 2 (1935), 37; 3 (1935), 182.Google Scholar
  17. [17]
    Schofield R.K., Da Costa J.V.B.The measurements of pF in soil by freezing-point. J. Agric. Sci., 28 (1938), 645.CrossRefGoogle Scholar
  18. [18]
    Sill R.C., Skapski A.S.Method for the determination of the surface tension of solids from their melting points in thin wedges. J. Chem. Phys. 24 (1956), 644.CrossRefGoogle Scholar
  19. [19]
    Vos B.H., Tammes E.Moisture and moisture transfer in porous materials. Report No. BI-69-96. TNO Delft, 1969.Google Scholar
  20. [20]
    Vuorinen J.On use of dilation factor and degree of saturation in testing concrete for frost-resistance. Nordisk Betong, 1970: 1, 37.Google Scholar
  21. [21]
    Washburn E.W.The vapour pressure of ice and of water below the freezing point. Monthly Weather Rev. (Oct. 1924), 488.Google Scholar
  22. [22]
    Wheeler A.Reaction rates and selectivity in catalyst pores. Catalysis Part II. Ed. P.H. Emmett. Rheinhold Publ. Corp. N.Y. 1955, 105.Google Scholar
  23. [23]
    Williams P.J.Properties and behaviour of freezing soils. Norwegian Geotechnical Institute. Publ. No. 72, Oslo, 1967.Google Scholar
  24. [24]
    Winslow D.N., Diamond S.A mercury porosimetry study of the evaluation of porosity in Portland cement. J. of Materials, Vol. 5, [3] (1970), 564.Google Scholar
  25. [25]
    Sneck T., Oinonen H.Measurements of pore size distribution of porous materials. The State Inst. for Techn. Res., Finland, Publ. No. 155, Helsinki (1970).Google Scholar

Copyright information

© Secrétariat de Rédaction 1973

Authors and Affiliations

  • G. Fagerlund
    • 1
  1. 1.Division of Building MaterialsThe Lund Institute of TechnologyLundSweden

Personalised recommendations