Skip to main content
Log in

Pore size analysis according to the Kelvin equation

  • Published:
Matériaux et Construction Aims and scope Submit manuscript

Abstract

The theoretical and practical principles underlying the determination of pore size distribution from measurements of the capillary condensation of vapours are reviewed. As in mercury porosimetry, a model must be introduced to provide a simplified description of the pore structure, and the two methods are similar in principle. However, rather elaborate corrections are necessary to take account of multimolecular adsorption which accompanies capillary condensation. Nevertheless, the method is suitable for pores too fine to be measurable by mercury porosimetry. The range of applicability of the Kelvin equation, the process of micropore filling and the origin of adsorption hysteresis are reviewed briefly.

Résumé

On décrit le processus de condensation capillaire des vapeurs dans des pores de dimension intermédiaire (mésopores, de l’ordre de 2–20 nm). On examine les causes de l’hystérésis d’adsorption et le mécanisme par lequel même des pores plus petits (micropores) se trouvent remplis. La distribution du diamètre des pores peut être calculée au moyen d’un modèle géométrique simple, à l’aide de l’équation de Kelvin. On se sert d’un modèle identique pour interpréter les mesures de porosimétrie au mercure; les deux méthodes donnent des résultats concordants. La condensation capillaire peut s’appliquer à des pores de dimension bien au-dessous de ceux qui sont accessibles à la méthode au mercure. Cependant, il faut des corrections assez complexes pour tenir compte de l’adsorption multimoléculaire qui accompagne la condensation capillaire. On présente les principes théoriques et expérimentaux de la méthode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brunauer S.Physical adsorption of gases and vapours. Vol. I, Oxford University Press (London, 1943).

    Google Scholar 

  2. Carman P.C., Raal F.A.—Proc. Roy. Soc., 209, 59 (1951).

    Google Scholar 

  3. Bering B.P., Dubinin M.M., Serpinsky V.V.— J. Coll. Interface Sci., 38, 185 (1972).

    Article  Google Scholar 

  4. Fagerlund G.—Mat. et Constr. [33] (1973).

  5. Sandstede G., Robens E.—Chemie-Ing.-Technik, 34, 708 (1962).

    Article  Google Scholar 

  6. Robens E., Sandstede G.—J. Sci. Inst., Ser. 2, 2, 365 (1969).

    Google Scholar 

  7. Bodor E.E., Skalny J., Brunauer S., Hagymassy Jr.J., Yudenfreund M.—J. Coll. Interface Sci., 34, 560 (1970).

    Article  Google Scholar 

  8. Hagymassy Jr.J., Odler I., Yudenfreund M., Skalny J., Brunauer S.—J. Coll. Interface Sci., 38, 20 (1972).

    Article  Google Scholar 

  9. Odler I., Hagymassy Jr.J., Yudenfreund M., Hanna K.M., Brunauer S.—J. Coll. Interface Sci., 38, 265 (1972).

    Article  Google Scholar 

  10. Brunauer S., Mikhail R.Sh., Bodor E.E.—J. Coll. Interface Sci., 24, 451 (1967);ibid. 25, 353 (1967).

    Article  Google Scholar 

  11. Brunauer S.—InSurface area determination (ed. D.H. Everett and R.H. Ottewill), Butterworth (London, 1970), p. 63.

    Google Scholar 

  12. Everett D.H., Haynes J.M.—Chemical Society Specialist Periodical Reports, Vol. 25 “Colloid Science” (1973), Chap. IV.

  13. Mikhail R.Sh., Brunauer S., Bodor E.E.—J. Coll. Interface Sci., 26, 54 (1968).

    Article  Google Scholar 

  14. Hagymassy Jr.J., Brunauer S.—J. Coll. Interface Sci., 33, 317 (1970).

    Article  Google Scholar 

  15. Skalny J., Bodor E.E., Brunauer S.—J. Coll. Interface Sci., 37, 476 (1971).

    Article  Google Scholar 

  16. Skalny J., Odler I., Hagymassy Jr.J.—J. Coll. Interface Sci., 35, 434 (1971).

    Article  Google Scholar 

  17. Odler I., Skalny J.—J. Coll. Interface Sci., 36, 293 (1971).

    Article  Google Scholar 

  18. Skalny J., Odler I.—J. Coll. Interface Sci., 40, 199 (1972).

    Article  Google Scholar 

  19. Radjy F., Sellevold E.J.—J. Coll. Interface Sci., 39, 367;379 (1972).

    Google Scholar 

  20. Melrose J.C.—J. Coll. Interface Sci., 38, 312 (1972).

    Article  Google Scholar 

  21. Harris M.R.—Chemistry and Industry, 1965, 268.

  22. Harris M.R., Whitaker G.—J. Appl. Chem., 13, 348 (1963).

    Article  Google Scholar 

  23. Kadlec O., Dubinin M.M.—J. Coll. Interface Sci., 31, 479 (1969).

    Article  Google Scholar 

  24. Burgess C.G.V., Everett D.H.—J. Coll. Interface Sci., 33, 611 (1970).

    Article  Google Scholar 

  25. Barrett E.P., Joyner L.G., Halenda P.B.— J. Amer. Chem. Soc., 73, 373 (1951).

    Article  Google Scholar 

  26. Cranston R.W., Inkley F.A.—Adv. Catal., 9, 143 (1957).

    Article  Google Scholar 

  27. Irving J.P., Butt J.B.—J. Appl. Chem. 15, 139 (1965).

    Article  Google Scholar 

  28. Aylmore L.A.G., Quirk P.G.—J. Soil Sci., 18, 1 (1967).

    Article  Google Scholar 

  29. Kankare, J., Jäntti O.—Suom. Kemistilehti, B 40, 51 (1967).

    Google Scholar 

  30. Jäntti O., Penttinen M.—Suom. Kemistilehti, B 43, 239 (1970).

    Google Scholar 

  31. Bodor E.E., Odler I., Skalny J.—J. Coll. Interface Sci., 32, 367 (1970).

    Article  Google Scholar 

  32. Phillips J.C.—J. Coll. Interface Sci., 38, 664 (1972).

    Article  Google Scholar 

  33. Joyner L.G., Barrett E.P., Skold R.—J. Amer. Chem. Soc., 73, 3155 (1951).

    Article  Google Scholar 

  34. Zwietering P., Van Montfort A., Tebben J.H. —Proc. III Int. Conf. Reactivity of Solids (Madrid, 1956), 4, 123.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haynes, J.M. Pore size analysis according to the Kelvin equation. Mat. Constr. 6, 209–213 (1973). https://doi.org/10.1007/BF02479035

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02479035

Keywords

Navigation