Skip to main content
Log in

Phenomenological aspect of concrete durability theory

  • Published:
Matériaux et Construction Aims and scope Submit manuscript

Abstract

It is shown that concrete destruction by freezing and thawing, in dry and hot climate, under sulphate and potassium aggression occurs because of high inner tensile stresses appearing as a result of bonding in concrete conglomerate the components with widely different deformations under the action of corrosion. The problem of concrete frost resistance is considered in detail. The model of concrete as a material of “conglomerate in conglomerate” type, divided into three structural levels is proposed. The measurement of damage to concrete, being characterized by the ratio of maximum total inner stresses to local strength of structure is introduced. It is shown that the developed approach makes it possible to explain from a single viewpoint the majority of experimental facts, known in the field of concrete durability.

Résumé

Dans cet article on étudie l'aspect phénoménologique de la théorie de la durabilité du béton qui se détruit par l'effet des pressions internes et de la pression interstitielle. On étudie les déformations et les contraintes iternes dans le béton ainsi que les fissures et autres détériorations provoquées par ces phénomènes. On introduit le modèle mathématique du béton considéré comme un matériau de type: «agglomérat dans l'agglomérat» divisé en niveaux structuraux. La formule pour le calcul des déformations internes aux niveaux différents est proposée. Le calcul des contraintes a été effectué sur la base du modèle: «bille à enveloppe sphérique». Il est établi que les contraintes maximales de traction apparaissent dans le béton quand il est constitué des composants subissant des déformations tout à fait différentes sous les effets des attaques corrosives. On avance l'idée d'une mesure de la durabilité du béton qui s'exprime par le rapprt de la somme des contraintes internes de traction à la résistance locale de la structure.

L'analyse détaillée a été effectuée dans le domaine de la résistance du béton au gel. Il est établi que les idées developpées permettent d'expliquer, en partant d'un point de vue général, une grande quantité de résultats expérimentaux obtenus par l'étude de la résistance du béton au gel: la localisation des fissures pendant la destruction sous l'action du gel: l'influence de la composition du béton sur sa résistance au gel; le module d'élasticité des granulats; la formation des pores à l'aide d'entrîneurs d'air.

On examine aussi la mesure de la résistance du béton au gel comme l'indice caractérisant la stabilité du béton soumis au gel pendant un cycle et la durabilité du béton soumis à un essai à plusieurs cycles. On analyse le schéma des phénomènes successifs qui amènent en fin de compte à la destruction corrosive du béton.

En conclusion on peut formuler l'hypothèse que les idées développées se rapportent non seulement à la résistance du béton au gel mais aussi à une grande quantité d'autres phénomènes qui provoquent la destruction du béton tels que: les corrosions sulfatique et potassique, différents effets de température, d'humidité, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Δ:

before symbol “-” designates the change of corresponding symbol

a :

core radius in model

B :

external radius of envelope in model

E :

elasticity modulus

N :

the number of test cycles (the same in indices)

N st :

frost resistance in cycles, determined in accordance with standard procedure (the same in indices)

n :

the number of structural elements

R :

strength

t :

temperature

t 0 :

temperature at which α1≈α2

v :

volume concentration

w/c :

water/cement ratio in concrete

α:

linear coefficient of temperature expansion

δ=a−B :

envelope thickness in model

ε:

relative deformation of component in model

μ:

Poisson's ratio

σ:

stresses

σ r :

normal stresses in envelope, radial

σ θ :

normal stresses in envelope, tangential

σ′ r ,θ r ,θt :

specific stresses

1:

core in model (aggregate)

2:

envelope in model (binding)

I, II, III:

1st, 2nd, 3rd structural levels, respectively

c :

concrete

c a :

coarse aggregate

cl:

clinker

con:

conglomerate

d :

dynamical

f a :

fine aggregate

h :

hydrated mass

i :

instantaneous

l :

local

m :

mortar

s :

cement stone

res:

residual

Ω:

summary

t :

tension

References

  1. Gvozdev A. A.Principal problems of reinforced concrete theory for the near 20 years. Izvestiya Akademii stroitelstva i arhitektury S.S.S.R. (Proceedings of the U.S.S.R. Construction and Architecture Academy), No. 4, 1962, p. 3.

    Google Scholar 

  2. Zhitkevich H. A.—Monolitnost Zhelezobetonnich Sooruzhenij (Cast in-situ concrete structures). SPb, 1905.

  3. Powers T. C., Helmuth R. A.Theory of volume changes in hardened Portland cement paste during freezing, Proceddings, Highway Research Boarch. Vol. 32 1953, 285.

    Google Scholar 

  4. Collins A. R.Thè destruction of contrete by frost. J. of the Institut of Civil Engineers. Vol. 23, No. 1, 1944.

  5. Powers T. C.A working hypothesis for further studies of frost resistancp of concrete. J. of the ACI, Vol. 16, No. 4, 1945.

  6. Everett D. H.The thermodynamics of frost damage to porous solids, Trans. Farad. Soc., Vol. 57, (a), 1961. p. 1541.

    Article  Google Scholar 

  7. Cordon W. A.Freezing and thawing of concrete. Mechanism and control. ACI, Detroit, Jowa, 1966.

    Google Scholar 

  8. Jackson K. A., Chalmers B.Freezing of liquids in porous media. J. of Applied Physic. Vol. 23, No. 8, 1958, 1178.

    Article  Google Scholar 

  9. Podvalnyl A. M., Sadykov M. S.Concrete frost resistance in electrolyte solutions. “Beton i Zhelozobeton” (Concrete and Reinforced Concrete), No. 10, 1971, p. 22.

    Google Scholar 

  10. Litvan G. G.Frost action in cement paste. Materials and Structures, No. 34, July–August, 1973.

  11. Kuntsevich O. V.—Issledovanie physicheskikh i technologicheskikh osnov proektirovaniya morozostoikikh betonov (Study of physical and technological principles for designing the frost-resistant concretes) Synopsis of thesis, L., 1968.

  12. Deryagin B. V.—In paperDevelopment of surface forces investigations Vestnic Academii Nauk S.S.S.R. (Herald of AN U.S.S.R., the U.S.S.R. Academy of Sciences), No. 1, 1974.

  13. Harvey D.Explanation in geofraphy, L., 1969.

  14. Trinker B. D.Concrete frost resistance and methods for its testing. Col. “Morozostoikost' betonov” (Frost resistance of Concrete) Gosstroyizdat, M., 1959.

    Google Scholar 

  15. Podvalnyi A. M.Thermal strains and stresses in reinforced concrete caused by diserepancy in thermophysical properties of steel and concrete. Inzhenernophizicheskii zhurnal (Engineer-Physical Journal), V, No. 2, 1962, p. 113.

    Google Scholar 

  16. Gladkov V. S., Ivanov F. M., Royak G. S.Accelerated method for concrete frost resistance study. Col. “Zashchita stroitelnykh konstrukstyi ot korrozii” (Anti corrosive protection of building structure), Stroyizdat, M., 1966.

    Google Scholar 

  17. Moskvin V. M., Podvalnyi A. M., Samoilenko V. N.Design value for coefficient of concrete temperature expansion under below zero temperature. “Beton i zhelezobeton” (Concrete and Reinforced Concrete), No. 6, 1973.

  18. Walker S., Bloem D. L., Mullen W. G.Effect of temperature changes on concrete as influenced by aggregates. J. of the ACI, Vol. 23, No. 8, 1952.

  19. Podvalnyi A. M.Determination of value of inner deformations in concrete conglomerate on different structural levels. Savodskaya laboratoriya (Plant Laboratory), No. 10, 1973, p. 1204.Dispersion of inner stresses in concrete. Col. Korrozionnaya stoikost' betona i stalnoi armatury (Corrosion Resistance of Concrete and Steel Reinforcement). Stroyizdat, M., 1973.

    Google Scholar 

  20. Krasilnikov K. G., Skoblinskaya N. N.Deformation of polycrystal tobermorite structure under sorption and desorption of water steam. Doklady Akademii Nauk S.S.S.R. (Reports of AN U.S.S.R., the U.S.S.R. Academy of Sciences), 184, No. 1, 1969, p. 151.

    Google Scholar 

  21. Podvalnyi A. M.Some peculiarities of concrete destruction by frost. Col. Korroziya, metody zashchity povysheniya dolgovechnosti betona i zhelezobetona (Corrosion, Method for Concrete and Reinforced Concrete Protection and Insrease of their Durability), Stroyizdat, M., 1965.

    Google Scholar 

  22. Moskvin B. M., Kapkin M. M., Mazur V. M., Podvalnyi A. M.—Stoikost' betona i zhelezobetona pri otritsatelnoi temperature (itDurability of concrete and reinforced concrete under below zero temperature) Stroyizdat, M., 1967.

    Google Scholar 

  23. L'Hermite R.Proceedings of the fourth international symposium on the chemistry of cement. Washington, 1960.

  24. Hansen T. C.Theories of multi-phase materials applied to concrete, cement mortar and cement paste. The structure of concrete. Cement and Concrete Association. L., 1968.

    Google Scholar 

  25. Henk B.Betrachtung über Gefügespannung in Beton. Zement-Kalk-Gips, 9, No. 3, 1955, p. 111.

    Google Scholar 

  26. Smith S. M.Physical incompatibility of matrix and aggregate in concrete. J. of the ACI, 27, No. 7, 1956, p. 791.

    Google Scholar 

  27. Hsu T. C.Mathematical analysis of shrinkage stresses in a model of hardened concrete. J. of the ACI, 60, No. 3, 1963, p. 371.

    Google Scholar 

  28. Moskvin V. M., Osetinsky Yu. V., Podvalnyi A. M. —Stroitelnaya mekhanika i raschet sooruzhenii (Structural mechanics and design of constructions), No. 5, 1974.

  29. Ash J. E.Bleeding in concrete. A microscopic study. J. of the ACI, 69, No. 4, 1972, p. 209.

    Google Scholar 

  30. Podvalnyi A. M., Garashin V. R.Investigation of concrete destruction process by methods of electronic and optical microscopy. Col. Phisiko-chimicheskie issledovaniya tsementnogo kamnya i betona. (Physicochemical investigations of cement stone and Concrete), M., NIIZhB. ONTI, 1972.

    Google Scholar 

  31. Podvalnyi A. M.Creep of frozen concrete. Dolkady Akademii Nauk S.S.S.R. (Report of the U.S.S.R. Academy of Sciences), 148, No. 5, 1963, p. 1148.

    Google Scholar 

  32. Neville A. M.Properties of concrete., L., 1963.

  33. Podvalnyi A. M.Inner stresses appearing in concrete at freezing. Inzhenerno-phizichesky Zhurnal (Ing.-Phys. Journal), XXV, No. 2, 1973, p. 316.Design assessment of factors, affecting concrete frost resistance. Inzhenerno-phizichesky Zhurnal (Ing.-Phys. Journal), XXVI, No. 6, 1974, p. 1034.

    Google Scholar 

  34. Gorchakov G. I., Alimov L. A., Voronin V. V., Akimov A. V.Dependence between concretes frost resistance and their structural and thermal strains. “Beton i zhelezobeton” (Concrete and Reinforced Concrete), No. 10, 1972, p. 7.Akimov A. V.Issle-dovanie morozostoikosti betnov v zavisimosti ot ikh strukturnykh kharakteristik (Investigation of Concretes frost resistance depending on their structural characteristics). Thesis, M., 1972.

    Google Scholar 

  35. Desov A. E., Nadolsky V. I.—Col. Technologiya i svoistva tyazhelykh betonov (Technology and properties of heavy concretes). Gosstroyizdat, M., 1962.

    Google Scholar 

  36. Standard of the U.S.S.R. GOST 10060-62. Concrete heavy.Method of frost proof definition.

  37. Bazhenov Yu. M.—Beton pri dinamicheskom nagruzhenii (Concrete under dymanic loading), Stroyizdat, M., 1970.

    Google Scholar 

  38. Sholer C. H.Significant factors affecting concrete durability. ASTM Proceedings. 52, 1952, p. 1145.

    Google Scholar 

  39. Bazhenov Yu. M.Assessment criterion for concrete behaviour in hot dry climate. Beton i zhelezobeton (Concrete and Reinforced Concrete), No. 8, 1971, p. 9.

    Google Scholar 

  40. Wittmann F., Lukas J.Experimental study of thermal expansion of hardened cement paste. Materials and Structures. 7, No. 40, July–August, 1974, p. 247.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Podvalnyi, A.M. Phenomenological aspect of concrete durability theory. Mat. Constr. 9, 151–162 (1976). https://doi.org/10.1007/BF02479005

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02479005

Keywords

Navigation