Skip to main content
Log in

Accumulation of class I mutant p53 and apoptosis induced by carboplatin in a human glioma cell line

  • Original Article
  • Published:
Brain Tumor Pathology Aims and scope Submit manuscript

Abstract

Following DNA damage, wild-type p53 increases and mediates the multiple cellular responses for the repair of DNA damage or apoptosis. Inactivation of p53 by single-amino-acid substitutions contributes to the malignant phenotype and confers resistance to therapy. Among tumor-derived p53 mutants, class I mutants still retain a native-like three-dimensional structure, whereas class II mutants have unfolded DNA-binding domains. Sequencing analysis demonstrated that a human glioma cell line (U-373MG) had only a class I mutant form of p53 of His273, which targets an Arg273 that contacts DNA but retains the native structure. In this study, we investigated the metabolic alteration of the class I mutant p53 in apoptosis of U-373MG. The cell cycle progression of U-373MG cells was affected by the addition of carboplatin, while the amount of mutant p53 also increased in their nuclei. The treated cells underwent apoptosis 48h after exposure to 50 μg/ml carboplatin. Although the exact mechanism of the class I mutant p53 in the process of apoptosis has not yet been clarified, the fact that accumulation of the activated mutant p53 in the nucleus of U-373MG is concomitant with apoptosis, just as wild-type p53 does, implies that the class I mutant p53 might retain the ability to participate in apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Clark, JR, Dreyfuss AI (1991) The role of cisplatin in treatment regimens for squamous cell carcinoma of the head and neck. Semin Oncol 18:34–48

    PubMed  CAS  Google Scholar 

  2. Loehrer PJ, Einhorn LH (1984) Drugs five years later. Cisplatin. Ann Intern Med 100:704–713

    CAS  Google Scholar 

  3. Marples B, Adomat H, Billings PC, et al. (1994) Recognition of platinum-induced DNA damage by nuclear proteins: screening for mechanisms. Anti-Cancer Drug Des 9:389–399

    CAS  Google Scholar 

  4. Raghavan D, Pearson B, Watt WH, et al. (1991) Cytotoxic chemotherapy for advanced bladder cancer: cisplatin-containing regimens. Semin Oncol 18:56–63

    PubMed  CAS  Google Scholar 

  5. Alberts DS, Green S, Hannigan EV, et al. (1992) Improved therapeutic index of carboplatin plus cyclophosphamide versus cisplatin plus cyclophosphamide: final report by the Southwest Oncology Group of phase III randomized trial in stage III and IV ovarian cancer. J Clin Oncol 10:706–717

    PubMed  CAS  Google Scholar 

  6. Doz F, Berens ME, Dougherty DV, et al. (1991) Comparison of the cytotoxic activities of cisplatin against glioma cell lines at pharmacologically relevant drug exposures. J Neurooncol 11:27–35

    Article  PubMed  CAS  Google Scholar 

  7. Hollis LS, Sundquist WI, Burstyn JN, et al. (1991) Mechanistic studies of a novel class of trisubstituted platinum (II) antitumor agents. Cancer Res 51:1866–1875

    PubMed  CAS  Google Scholar 

  8. Treskes M, van der Vijgh WJF (1993) WR2721 as a modulator of cisplatin- and carboplatin-induced side effects in comparison with other chemoprotective agents: a molecular approach. Cancer Chemother Pharmacol 33:93–106

    Article  PubMed  CAS  Google Scholar 

  9. Kobayashi T, Tominaga T, Yoshimoto T (1994) Cell death due to ACNU-induced DNA fragmentation: inhibition by cycloheximide. J Neurooncol 22:23–31

    Article  PubMed  CAS  Google Scholar 

  10. Barry MA, Behnke CA, Eastman A (1990) Activation of programmed cell death (apoptosis) by cisplatin, other anticancer drugs, toxins and hyperthermia. Biochem Pharmacol 40:2353–2362

    Article  PubMed  CAS  Google Scholar 

  11. El-Deiry WS, Harper JW, O'Connor PM, et al. (1994) WAF1/CIP1 is induced in p-53 mediated G1 arrest and apoptosis. Cancer Res 54:1169–1174

    PubMed  CAS  Google Scholar 

  12. Smith ML, Chen I-T, Zhan Q, et al. (1994) Interaction of the p53-regulated protein gadd-45 with proliferating cell nuclear antigen. Science 266:1376–1380

    PubMed  CAS  Google Scholar 

  13. Lowe SW, Ruley HE, Jacks T, et al. (1993) p-53 dependent apoptosis modulates the cytotoxity of anticancer agents. Cell 74:957–967

    Article  PubMed  CAS  Google Scholar 

  14. Eizenberg O, Faber-Elman A, Gottlieb E, et al. (1995) Direct involvement of p53 in programmed cell death of oligodendrocytes. EMBO J 14:1136–1144

    PubMed  CAS  Google Scholar 

  15. Hinds PW (1995) The retinoblastoma tumor suppressor protein. Curr Opin Genet Dev 5:79–83

    Article  PubMed  CAS  Google Scholar 

  16. Picksley SM, Lane D (1995) p53 and Rb: their cellular roles. Curr Opin Cell Biol 6:853–858

    Article  Google Scholar 

  17. Haffner R, Oren M (1995) Biochemical properties and biological effects of p53, Curr Opin Genet Dev 5:84–90

    Article  PubMed  CAS  Google Scholar 

  18. Fan S, El-Deiry WS, Bae I, et al. (1994) p53 gene mutations are associated with decreased sensitivity of human lymphoma cells to DNA-damaging agents, Cancer Res 54:5824–5830

    PubMed  CAS  Google Scholar 

  19. O'Connor PM, Jackman J, Jondle D, et al. (1993) Role of the p53 tumor suppressor oncogene in cell cycle arrest and radiosensitivity of Burkitt's lymphoma cell lines. Cancer Res 53:4776–4780

    PubMed  Google Scholar 

  20. Horowitz JM, Park S-H, Bogenmann E, et al. (1990) Frequent inactivation of the retinoblastoma antioncogene is restricted to a subset of human tumor cells. Proc Natl Acad Sci USA 87:2775–2779

    Article  PubMed  CAS  Google Scholar 

  21. Esrig D, Elmajian D, Groshen S, et al. (1994) Accumulation of nuclear p53 and tumor progression in bladder cancer. N Engl J Med 331:1259–1264

    Article  PubMed  CAS  Google Scholar 

  22. Hawkins DS, Demers GW, Galloway DA (1996) Inactivation of p53 enhances sensitivity to multiple chemotherapeutic agents. Cancer Res 56:892–898

    PubMed  CAS  Google Scholar 

  23. Malcomson RDG, Oren M, Wyllie AH, et al. (1995) p53-independent death and p53-induced protection against apoptosis in fibroblasts treated with chemotherapeutic drugs. Br J Cancer 72:952–957

    PubMed  CAS  Google Scholar 

  24. Pontin J, Westermark B (1978) Properties of human malignant glioma cells in vitro. Med Biol 56:184–193

    Google Scholar 

  25. Iwaki T, Iwaki A, Fukumaki Y, et al. (1995) αB-crystallin in C6 glioma cells supports their survival in elevated extracellular K+: the implication of a protective role of αB-crystallin accumulation in reactive glia. Brain Res 673:47–52

    Article  PubMed  CAS  Google Scholar 

  26. Orita M, Suzuki Y, Sekiya T, et al. (1989) Rapid and sensitive detection of point mutations and DNA polymorphism using the polymerese chain reaction. Genomics 5:874–879

    Article  PubMed  CAS  Google Scholar 

  27. Hamada Y, Iwaki T, Fukui M, et al. (1995) Proliferative activity and apoptosis of Langerhans histiocytes in eosinophilic granulomas as evaluated by MIB-1 and TUNEL methods. J Clin Pathol Mol Pathol 48:M251-M255

    Article  Google Scholar 

  28. Markwell MAK, Haas SM, Bieber LL, et al. (1978) A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem 87:206–210

    Article  PubMed  CAS  Google Scholar 

  29. Iwaki T, Iwaki A, Tateishi J, et al. (1994) Sense and antisense modification of glial αB-crystallin production results in alterations of stress fiber formation and thermoresistance, J Cell Biol 125: 1385–1393

    Article  PubMed  CAS  Google Scholar 

  30. Hollstein M, Sidransky D, Vogelstein B, et al. (1991) p53 mutations in human cancers, Science 253:49–53

    PubMed  CAS  Google Scholar 

  31. Wieczorek AM, Waterman JLF, Waterman MJF, et al. (1996) Structure-based rescue of common tumor-derived p53 mutants. Mature Med 2:1143–1146

    Article  CAS  Google Scholar 

  32. Ryan JJ, Danish R, Gottleib CA, et al. (1993) Cell cycle analysis of p53-induced cell death in murine erythroleukaemia cells. Mol Cell Biol 13:711–719

    PubMed  CAS  Google Scholar 

  33. Yonish-Rouach E, Resnitsky D, Lotem J, et al. (1991) Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature 352:345–347

    Article  PubMed  CAS  Google Scholar 

  34. Lowe SW, Schmitt EM, Smith SW, et al. (1993) p53 is required for radiation induced apoptosis in mouse thymocytes. Nature 362:847–849

    Article  PubMed  CAS  Google Scholar 

  35. Kastan MB, Zhan Q, El-Diery DS, et al. (1992) A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia teleangiectasia. Cell 71:587–597

    Article  PubMed  CAS  Google Scholar 

  36. Graeber TG, Osmanian C, Jacks T, et al. (1996) Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumors. Nature 379:88–91

    Article  PubMed  CAS  Google Scholar 

  37. Bargonetti J, Friedman PN, Kern SE, et al. (1991) Wild-type but not mutant p53 immunopurified proteins bind to sequences adjacent to the SV40 origin of replication. Cell 65:1083–1091

    Article  PubMed  CAS  Google Scholar 

  38. Kern SE, Kinzler KW, Bruskin A, et al. (1991) Identification of p53 as a sequence-specific DNA-binding protein. Science 252:1708–1711

    PubMed  CAS  Google Scholar 

  39. Biernat W, Aguzzi A, Sure U, et al. (1995) Identical mutations of the p53 tumor suppressor gene in the gliomatous and the sarcomatous components of gliosarcomas suggest a common origin from glial cells. J Neuropathol Exp Neurol 54:651–656

    PubMed  CAS  Google Scholar 

  40. Aas T, Borresen A-L, Geisler S, et al. (1996) Specific p53 mutations are associated with de novo resistance to doxorubicin in breast cancer patients. Nature Med 2:811–814

    Article  PubMed  CAS  Google Scholar 

  41. Anker L, Ohgaki H, Ludeke BI, et al. (1993) p53 protein accumulation and gene mutations in human glioma cell lines. Int J Cancer 55:982–987

    PubMed  CAS  Google Scholar 

  42. Asai A, Miyagi Y, Sugiyama A, et al. (1994) Negative effects of wild-type p53 and s-Myc on cellular growth and tumorigenicity of glioma cells. Implication of the tumor suppressor genes for gene therapy. J Neuro-Oncol 19:259–268

    Article  CAS  Google Scholar 

  43. Moll UM, Ostermeyer AG, Ahomadegbe J-C, et al. (1995) p53 mediated tumor cell response to chemotherapeutic DNA damage: a preliminary study in matched pairs of breast cancer biopsies. Hum Pathol 26:1293–1301

    Article  PubMed  CAS  Google Scholar 

  44. Cho Y, Gorina S, Jeffrey PD, et al. (1994) Crystal structure of a p53 tumor suppressor DNA complex: understanding tumorigenic mutations. Science 265:346–355

    PubMed  CAS  Google Scholar 

  45. Polyak K, Waldman T, He TC, et al. (1996) Genetic determinants of p53-induced apoptosis and growth arrest. Genes Dev 10:1945–1952

    PubMed  CAS  Google Scholar 

  46. Tchang F, Gussee M, Soussi T, et al. (1993) Stabilization and expression of high levels of p53 during development in Xenopus laevis. Dev Biol 159:163–172

    Article  PubMed  Google Scholar 

  47. Fontura BMA, Sorokina EA, David E, et al. (1992) p53 is covalently linked to 5.8S rRNA. Mol Cell Biol 12:5145–5151

    Google Scholar 

  48. Sadoul R, Quiquerez A-L, Martinou I, et al. (1996) p53 protein in sympathetic neurons; cytoplasmic localization and no apparent function in apoptosis. J Neurosci Res 43:594–601

    Article  PubMed  CAS  Google Scholar 

  49. Fan S, Smith ML, Rivet DJ, et al. (1995) Disruption of p53 function sensitizes breast cancer MCF-7 cells to cisplatin and pentoxifylline. Cancer Res 55:1649–1654

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toru Iwaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamada, Y., Mizoguchi, M., Suzuki, S.O. et al. Accumulation of class I mutant p53 and apoptosis induced by carboplatin in a human glioma cell line. Brain Tumor Pathol 15, 77–82 (1998). https://doi.org/10.1007/BF02478887

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02478887

Key words

Navigation