Skip to main content
Log in

Applications of a new technique for system identification to dolphin temperature regulation and rabbit intraocular pressure control

  • Published:
Medical and biological engineering Aims and scope Submit manuscript

Abstract

This study illustrates the application of system identification by linear programming (see page 231) to two diverse biological problems, namely incremental deep body temperature regulation in dolphins, recorded by radio telementry from a swallowed temperature sensitive transmitter, and intraocular pressure control in rabbits. An interesting result of the dolphin experiment is that the animal's internal temperature rises following a transfer from warmer to colder water. The temperature transient indicates an overshoot phenomena followed by a return to the original equilibrium temperature in approximately 1 hr. A theory of the operation of the ‘counter-flow heat exchanger’ of the dolphin is presented in conjunction with a linear model for thermal regulation. The mechanism of intraocular pressure control in a rabbit is also briefly investigated. Pressure transients resulting from injection of small amounts of fluid into a rabbit's eye are presented and a comparison is made between the formulated mathematical model and existing electrical analogs for intraocular pressure regulation. The pressure transient and model for an eye in a recently killed rabbit are significantly different from those of a live rabbit.

Sommaire

Cette étude illustre l'article relatif à l'identification de systèmes physiques par la technique de programmation linéaire (voir pages 231). Deux applications tirées du domain biologique en sont données ici; la régulation incrémentale de la température profonde du dauphin, enregistrée par télémesure à l'aide d'un émetteur thermosensible avalé, et le contrôle de la pression intraoculaire chez le lapin. L'expérimentation sur le dauphin a révélé que sa température interne augmentait quand il passait d'une eau chaude à une eau plus froide. La courbe transitoire présente un overshoot suivi d'un retour à l'équilibre initial au bout d'une heure environ. On établit un parallèle entre un modèle linéaire de régulation thermique et une théorie tirée de ce processus d'échange de chaleu paradoxal du dauphin.

De même on examine brièvement le mécanisme de contrôle de la pression intraoculaire chez le lapin. On présente le réponses transitoires de la pression consécutives à l'injection dans l'oeil du lapin de petites quatités de liquide, et on compare une expression mathématique de le modèle aux analogies électriques existantes relatives à la régulation intraoculaire. Des différences significative apparaissent entre les réponses trasitoires et le modèle d'un oeil de lapin, suivant qu'il a été récemment tué, ou qu'il est vivant.

Zusammenfassung

Diese Untersuchung illustriert die Anwendung des Verfahrens der Systemidentifizierung durch Linearprogrammierung (siehe Seite 231) auf zwei verschiedene biologische Probleme: die inkrementelle Regulation der tiefen Körpertemperatur beim Delphin, welche radiotelemetrisch durch einen verschluckten empfindlichen Temperatursender registriert wird, und die Kontrolle des intraokulären Drucks beim Kaninchen. Ein interessantes Resultat im Delphinexperiment ist der Ansteig der inneren Temperatur des Delphins, wenn das Tier von wärmerem in kälteres Wasser gebracht wird. Der Temperaturübergang zeigt ein Overshootphänomen mit nachfolgender Rückkehr zur ursprünglichen Gleichgewichstemperatur innerhalb etwa einer Stunde. Eine Theorie zur Arbeitsweise des “Gegenstrom-Wärmeaustauschers” des delphins wird im Zusammenhang mit einem linearen Wärmeregulationsmodell vorgelegt. Der Mechanismus der Kontrolle des intraokulären Drucks beim Kaninchen wird ebenfalls kurz untersuchts. Druckübergänge nach Injektion kleiner Flüssigkeitsmengen in ein Kaninchenauge werden dargestellt. Das formulierte mathematische Modell wird verglichen mit elektrischen Analogmodellen für die intraokuläre Druckregulation. Der Druckübergang und das Modell eines Auges von einem frischgetöteten Kaninchen uterscheidet sich signifikant von dem des lebenden Kaninchens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adler, F. H. (1965)Physiology of the Eye, Mosby, St. Louis.

    Google Scholar 

  • Benzinger, T. H. andKitzinger, C. (1963) The human thermostat. In.Temperature, Its Measurement and Control in Science and Industry, Vol. 3 (Part 3), Chaps. 5 and 6. Reinhold, New York.

    Google Scholar 

  • Brengelmann, G. L. andBrown, A. C. (1963) Role of rate of change of skin temperature in human temperature regulation.Physiologist 6, 146.

    Google Scholar 

  • Collins, C. (1966) private communication, Univ. Calif. Medical Center, San Francisco, Calif.

    Google Scholar 

  • Crosbie, R. J. andHardy, J. D., Fessenden, E. (1961) Electrical analog simulation of temperature regulation in man.IRE Trans. Biomedical Electronics 8, 4:245.

    Article  Google Scholar 

  • Duke-Elder, S. (1932)Text Book of Opthalmology, Vol. 1, Henry Kimpton, London.

    Google Scholar 

  • Hardy, J. D. andHammel, H. T. (1963) Control system in physiological temperature regulation. In:Temperature, Its Measurement and Control in Science and Industry, Vol. 3 (Part 3), p. 613, Reinhold, New York.

    Google Scholar 

  • Kanwisher, J. andLeivestad, H. (1957) Thermal regulation in whales.Norweg. Whaling Gaz. 46, 1.

    Google Scholar 

  • Kanwisher, J. andSundes, G. (1966) Thermal regulation in Cetaceans. In:Whales, Dolphins and Porpoises Edited by K. S. Norris. U.C. Press, Berkeley, Calif.

    Google Scholar 

  • Langham, M. E. (1959) Influence of the intraocular pressure on the formation of aqueous humor and the output resistance in the living eye.Br. J. Opthal. 43, 705.

    Google Scholar 

  • Macdonald, D. K. C. andWyndham, C. H. (1950) Heat transfer in man.J. appl. Physiol. 3, 342.

    Google Scholar 

  • Mackay, R. S. (1964) Deep body temperature of untethered dolphin recorded by ingested radio transmitter.Science 144, 1620:864.

    Google Scholar 

  • McEwen, W. K. andShepherd, M., McBain, E. (1966) Rheology of the human sclera.Opthalmologica 150, 5:22.

    Google Scholar 

  • Morrison, P. (1962) Body temperatures in some Australian mammals III. Cetacea (Megaptera).Biol. Bull. 123, 1:154.

    MathSciNet  Google Scholar 

  • Parry, D. A. (1949) The structure of whale blubber and a discussion of its thermal properties.Q. J. micr. Sci. 90, 13.

    Google Scholar 

  • Perkins, E. S. andGloster, J. (1957) Distensibility of the eyes.Br. J. Opthal. 41, 93.

    Google Scholar 

  • Reid, M. H. andMackay, R. S. (1968) A review and discussion of some methods for system identification and modelling.Med. & biol. Engng 6, 231.

    Google Scholar 

  • Ruch, T. C. andPatton, H. D. (1966)Physiology and Biophysics, Chap. 54. Saunders,

  • Schwartz, N. J. (1965) A theoretical and experimental study of the mechanical behavior of the cornea with application to the measurement of intraocular pressure. Ph.D. Thesis, Univ. of Calif, Berkeley, Calif.

    Google Scholar 

  • Slijper, E. J. (1962)Whales. Basic Books, New York.

    Google Scholar 

  • Young, L. R. andKupfer, C. (1965) A systems analysis view of intraocular pressure. In:6th Int. Conf. Medical Electronics in Biological Engineering, Tokyo. p. 420.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reid, M.H., Mackay, R.S. Applications of a new technique for system identification to dolphin temperature regulation and rabbit intraocular pressure control. Med. & biol. Engng. 6, 269–290 (1968). https://doi.org/10.1007/BF02478782

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02478782

Keywords

Navigation