Skip to main content
Log in

Double power law for basic creep of concrete

  • Published:
Matériaux et Construction Aims and scope Submit manuscript

Abstract

The dependence of creep on load duration (t−t′) as well as age at loading t′ is described by the law [1+ϕ 1 t-m(t-t′)n]/E 0 in which m, n,ϕ 1 E0=material parameters which are determined from test data by optimization techniques. The law is limited to basic creep, but with different values of material parameters it can also describe drying creep up to a certain time. The previous formulations are extended by introducing the age dependence. This also enhances the reliability in long-term extrapolation of creep data. Substituting t−t′=0.001 day, the law also yields the correct age dependance of the conventional elastic modulus, E. If E0, which is much larger than E, were replaced by E (as implied by previous power laws without age dependence), the age dependence of creep curves obtained by data analysis would be more scattered, the age dependence of E would have to be described by a separate formula, and more material parameters would be necessary to fit test data. The simplicity of the double power law is a major advantage for statistical evaluation of test data.

Résumé

La dépendance du fluage à la durée de chargement comme à l'âge du béton au temps t′ de mise en charge est traduite par la loi [1+ϕ 1 t-m(t-t′)n]/E 0 où m, n,ϕ 1, E0 sont des paramètres du matériau déterminés décrits par des techniques d'optimisation d'après les résultats d'essai. Cette loi ne s'applique qu'au béton en état de confinement (sans échanges avec l'ambiance), mais avec différentes valeurs des paramètres du matériau, elle peut rendre compte également du fluage de séchage à un moment donné. L'introduction dans les formules de la fonction d'âge recule leurs limites d'application et accroît aussi la fiabilité des extrapolations à long terme des données de fluage. Si l'on pose t−t′=0,001 jour, la loi fournit aussi la relation correcte à l'âge du module conventionnel d'élasticité E. Si l'on remplaçait E par E0 (qui est beaucoup plus grand)— comme l'impliquent les lois de puissance antérieures sans fonction d'âge—, la fonction d'âge des courbes de fluage obtenues par l'analyse des résultats donnerait lieu à une plus grande dispersion, il faudrait alors traduire la fonction d'âge de E par une formule indépendante, et il faudrait plus de paramètres du matériau pour avoir une bonne correspondance avec les résultats d'essai. La simplicité de la loi de puissance double présente un avantage majeur pour l'évaluation statistique des résultats d'essai.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ACI Committee 209, Subcom. II.Prediction of creep, shrinkage, and temperature effects in concrete structures, in Designing for Effects of Creep, Shrinkage and Temperature, American Concrete Institute Special Publication. No. 27, Detroit, 1971, pp. 51–93.

  2. Bažant Z. P.Theory of creep and shrinkage in concrete structures: A précis of recent developments. Mechanics Today, Vol. 2, S. Nemat-Nasser, Ed., Pergamon Press, 1975, pp. 1–93.

    Google Scholar 

  3. Bažant, Z. P., Wu S. T.Dirichlet series creep function for aging concrete. J. Engng. Mech. Div., Proc. Am. Soc. of Civil Engineers, Vol. 99, 1973. pp. 367–387.

    Google Scholar 

  4. Brown K. M.Derivative-free analogues of the Levenberg. Marquardt and Gauss algorithms for nonlinear least square approximations. IBM, Philadelphia Scientific Center Technical Report, No. 320-2994, 1970.

  5. Davis R. E., Troxell G. E.Modulus of elasticity and Poisson's ratio for concrete and the influence of age and other factors upon these values. Proc. ASTM, Vol. 29, Part II, 1929, pp. 678–710.

    Google Scholar 

  6. Dischinger F.Untersuchungen über die Knicksicherheit, die Elastische Verformung ünd das Kriechen des Betons bei Bogenbrücken. Der Bauingenieur, Vol. 18, 1937, pp. 487–520, 539–552, 595–621.

    Google Scholar 

  7. Gamble B. R., Thomass L. H.The creep of concrete subject to varying stress. Proc. of the Australian Conf. on the Mechanics of Structures and Materials, Adelaide, Australia, August 1969, Paper No. 24.

  8. Hanson J. A.A ten-year study of creep properties of concrete. Concrete Laboratory, Report No. Sp-38, U.S. Department of the Interior, Bureau of Reclamation, Denver, Colorado, July 1953.

    Google Scholar 

  9. Harboe E. M. et al.A comparison of the instantaneous and the sustained modulus of elasticity of concrete. Concrete Laboratory Report No. C-854, Div. of Engng. Laboratories, U. S. Dept. of the Interior, Bureau of Reclamation, Denver, Colorado, March 1958.

    Google Scholar 

  10. L'Hermite R. G.Volume changes of concrete. Proc. Fourth International Symposium on the Chemistry of Cement, Washington D.C., 1960, U.S. National Bureau of Standards, Monograph 43, Vol. 2, Paper V-3, pp. 659–694.

  11. L'Hermite R. G., Mamillan M., Lefèvre C.Nouveaux résultats de recherches sur la déformation et la rupture du béton. Annales de l'Institut Technique du Bâtiment et des Travaux Publics, Vol. 18, No. 207-208, 1965, pp. 323–360 (see also International Conference on the Structure of Concrete, Cement and Concrete Association, London, 1968, pp. 423–433).

    Google Scholar 

  12. Lorman W. R.The theory of concrete creep. Proc. ASTM, Vol. 40, 1940, pp. 1082–1102.

    Google Scholar 

  13. Marquardt D. W.An algorithm for least square estimation of non-linear parameters. J. of SIAM, Vol. 2, 1963, pp. 431–441.

    MathSciNet  Google Scholar 

  14. Mörsch E.Statik Der Gewölbe und Rahmen, Teil A, Wittwer, Stuttgart, 1947.

    Google Scholar 

  15. Mukaddam M. A., Bresler B.Behavior of concrete under variable temperature and loading. American Concrete Institute Spec. Publ. No. 34, Concrete for Nuclear Reactors, Detroit, 1972, pp. 771–797.

  16. Pirtz D.Creep characteristics of mass concrete for Dworshak Dam. Report No. 65-2, Structural Engineering Laboratory, University of California, Berkeley, October 1968.

    Google Scholar 

  17. Preece E. F.The use of the dynamic modulus of elasticity in predicting the 28-day flexural strength of concrete. Proc. ASTM, Vol. 46, 1946, pp. 1311–1319.

    Google Scholar 

  18. Ross A. D.Concrete creep data. The Structural Engineer, Vol. 15, No. 8, 1937, pp. 314–326.

    Google Scholar 

  19. Ross A. D.Creep of concrete under variable stress. American Concrete Institute Journal, Vol. 54, 1958, pp. 739–758.

    Google Scholar 

  20. Shank J. R.The plastic flow of concrete. Ohio State University Engineering Experiment Station, Bulletin No. 91, September 1935.

  21. Shideler J. J.Lightweight aggregate for structural use. American Concrete Institute Journal, Vol. 54, October 1957, pp. 299–328.

    Google Scholar 

  22. Straub H.Plastic flow in concrete arches. Proc. American Society of Civil Engineers, Vol. 56, January 1930, pp. 49–114.

    Google Scholar 

  23. Troxell G. E., Raphael J. M., Davis R. W.Long-time creep and shrinkage tests of plain and reinforced concrete. Proc. ASTM, Vol. 58, 1958, pp. 1101–1120; Disc. pp. 369–370.

    Google Scholar 

  24. Washa G. W., Wendt K. F.Fifty year properties of concrete. J. Amer. Concrete Institute, Vol. 72, 1975, pp. 20–28.

    Google Scholar 

  25. Wittmann F. H.Vergleich einiger Kriechfunktionen mit Versuchsergebnissen. Cement and Concrete Research, Vol. 1, No. 7, 1971, pp. 679–690.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bažant, Z.P., Osman, E. Double power law for basic creep of concrete. Mat. Constr. 9, 3–11 (1976). https://doi.org/10.1007/BF02478522

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02478522

Keywords

Navigation