Journal of Mathematical Biology

, Volume 6, Issue 1, pp 75–85 | Cite as

A singular perturbation approach to diffusion reaction equations containing a point source, with application to the hemolytic plaque assay

  • Alan S. Perelson
  • Lee A. Segel


Many cells secrete factors which diffuse and bind to receptors on neighboring cells. These processes can be described by a nonlinear diffusion equation with a point source and a spatially distributed binding reaction. We show via perturbation analysis how approximate solutions can be obtained for such equations when the binding reaction is fast compared to diffusive transport. We base our analysis on an example which is of great practical importance in immunology, the hemolytic plaque technique.

Key words

Duffusion reaction equations Hemolytic plaque assay 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Cunningham, A. J., Szenberg, A.: Further improvements in the plaque technique for detecting single antibody-forming cells. Immunology14, 599–600 (1968)Google Scholar
  2. Day, L. A., Sturtevant, J., Singer, S. J.: The kinetics of reactions between antibodies to the 2,4 dinitrophenyl group and specific haptens. Ann. N.Y. Acad. Sci.103, 611–625 (1963)Google Scholar
  3. DeLisi, C.: The kinetics of hemolytic plaque formation. III. Inhibition of plaques by antigen. J. Theor. Biol.51, 337–345 (1975a)CrossRefGoogle Scholar
  4. DeLisi, C.: The kinetics of hemolytic plaque formation. IV. IgM plaque inhibition. J. Theor. Biol.52, 419–440 (1975b)CrossRefGoogle Scholar
  5. DeLisi, C.: The kinetics of hemolytic plaque formation. V. The influence of geometry on plaque growth. J. Math. Biol.2, 317–331 (1975c)MATHCrossRefGoogle Scholar
  6. DeLisi, C.: Antigen Antibody Interactions, Lecture Notes in Biomathematics, Vol. 8, Berlin, Heidelberg, New York: Springer, 1976MATHGoogle Scholar
  7. DeLisi, C. P., Bell, G. I.: The kinetics of hemolytic plaque formation. Proc. Nat. Acad. Sci.71, 16–20 (1974)CrossRefGoogle Scholar
  8. DeLisi, C., Goldstein, B.: The kinetics of hemolytic plaque formation. II. Inhibition of plaques by hapten. J. Theor. Biol.51, 313–335 (1975)CrossRefGoogle Scholar
  9. Edberg, S. C., Bronson, P. M., Von Oss, C. J.: The valencyof IgM and IgG rabbit anti-dextran antibody as a function of the size of the dextran molecule. Immunochem.9, 273–288 (1972)CrossRefGoogle Scholar
  10. Froese, A.: Kinetic and equilibrium studies on 2,4 dinitrophenyl hapten-antibody systems. Immunochem.5, 253–264 (1968)CrossRefGoogle Scholar
  11. Goldstein, B., DeLisi, C., Abate, J.: Immunodiffusion in gels containing erythrocyte antigen. I. Theory for diffusion of antiserum from a circular well. J. Theor. Biol.52, 317–334 (1975)CrossRefGoogle Scholar
  12. Goldstein, B., Perelson, A. S.: The electrophoretic plaque assay— Theory. Biophysical Chem.4, 349–362 (1976)CrossRefGoogle Scholar
  13. Goldstein, B., Perelson, A. S.: The hemolytic plaque assay: Theory for finite layers. Biophysical Chem.7, 15–32 (1977)CrossRefGoogle Scholar
  14. Hiramoto, R. N., McGhee, J. R., Hamlin, N. M.: Measurement of antibody release from single cells I. J. Immunol.109, 961–967: II.109, 968–973 (1972)Google Scholar
  15. Hughes-Jones, N. C., Gardner, B., Telford, R.: The kinetics of the reaction between the blood-group antibody anti-C and erythrocytes. Biochem. J.85, 466–474 (1962)Google Scholar
  16. Hughes-Jones, N. C., Gardner, B., Telford, R.: Studies on the reaction between the blood group antibody anti-D and erythrocytes. Biochem. J.88, 435–440 (1963)Google Scholar
  17. Hughes-Jones, N. C., Gardner, B., Telford, R.: The effect of pH and ionic strength on the reaction between anti-D and erythrocytes. Immunology7, 72–81 (1964)Google Scholar
  18. Ingraham, J. S.: Identification individuelle des cellules productrices d'anticorps par une réaction hémolytique locale. C. R. Acad. Sci. Paris256, 5005–5008 (1963)Google Scholar
  19. Ingraham, J. S., Bussard, A. E.: Application of a localized hemolysin reaction for specific detection of individual antibody forming cells. J. Exp. Med.119, 667–684 (1964)CrossRefGoogle Scholar
  20. Jerne, N. K., Henry, C., Nordin, A. A., Fuji, H., Koros, A. M. C., Lefkovits, I.: Plaque forming cells: Methodology and theory. Transplant. Rev.18, 130–191 (1974)Google Scholar
  21. Jerne, N. K., Nordin, A. A.: Plaque formation in agar by single antibody-producing cells. Science140, 405 (1963)Google Scholar
  22. Jerne, N. K., Nordin, A. A., Henry, C.: The agar plaque technique for recognizing antibody-producing cells. In Cell Bound Antibodies, pp. 109–125 (Amos, B., Koprowski, H., eds.). Philadelphia: Wistar Institute Press, 1963.Google Scholar
  23. Kabat, E. A., Peterson, K. O.: The molecular weights of antibodies. Science87, 372 (1938)Google Scholar
  24. Lin, C. C., Segel, L. A.: Mathematics Applied to Deterministic Problems in the Natural Sciences, New York: Macmillan, 1974MATHGoogle Scholar
  25. Mayer, M.: The complement system. Sci. Am.229, (No. 5), 54–66 (1973)CrossRefGoogle Scholar
  26. Nossal, G. J. V., Lewis, H.: Functional symmetry among daughter cells arising in vitro from single antibody-forming cells. Immunol.20, 739–753 (1971)Google Scholar
  27. Nossal, G. J. V., Mäkelä, O.: Elaboration of antibodies by single cells. Ann. Rev. Microbiol.16, 53–74 (1962)CrossRefGoogle Scholar
  28. Osler, A. G.: Complement: Mechanisms and Function, Englewood Cliffs, New Jersey: Prentice Hall, 1976Google Scholar
  29. Pecht, I., Givol, D., Sela, M.: Dynamics of hapten antibody interaction studies on a myeloma protein with 2,4 dinitrophenyl specificity. J. Mol. Biol.68, 241–247 (1972)CrossRefGoogle Scholar
  30. Perelson, A. S., Goldstein, B.: Antigen modulation of antibody forming cells: The relationship between direct plaque size, antibody secretion rate and antibody affinity. J. Immunol.118, 1649–1954 (1977)Google Scholar
  31. Suzuki, T., Deutsch, H. F.: Dissociation, reaggregation and subunit studies of some human γM-globulins. J. Biol. Chem.242, 2725–2738 (1967)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Alan S. Perelson
    • 1
  • Lee A. Segel
    • 2
  1. 1.Theoretical DivisionUniversity of California, Los Alamos Scientific LaboratoryLos Alamos
  2. 2.Department of Applied MathematicsWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations