Skip to main content
Log in

Forced oscillations in a windkessel model

  • Published:
The bulletin of mathematical biophysics Aims and scope Submit manuscript

Abstract

Volume elasticity of the arterial system and its component parts is developed starting from a Windkessel*-model, which is defined in 4 points. Emphasis is laid on the simplicity of the derived equations and accessibility to experimental verification. The theory is an extension of earlier work achieved by Wetterer and Pieper (1953), who introduced an essentially physical method for the indirect determination of volume elasticity in situ, by creating forced sinusoidal oscillations in the arterial system, using a special pump operated at a considerably lower frequency than the mean heart frequency. The elegance of both experimental technique and the derived equations incited us to investigate the mathematical foundation and possible generalization of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Broemser, Ph. and O. F. Ranke. 1930. “Ueber die Messung des Schlagvolumens der Herzens auf unblutigen Wege.”Z. Biol.,90, 467–507.

    Google Scholar 

  • Cope, F. W. 1961. “A Method for the Computation of Aortic Distensibility in the Living Human Patient and its Use for the Determination of the Aortic Effects of Aging, Drugs, and Exercise.”Bull. Math. Biophysics,23, 337–353.

    Article  Google Scholar 

  • —. 1962. “A modified Windkessel Theory of the Human Arterial System using Modern Data on Aortic Elasticity, so as to Yield Computational Accuracy, Sufficient for Clinical Usefulness.” Symposium on the Development of Analog Computers in the Study of the Mammalian Circulatory System. North Holland Publ. Cie. Utrecht (Netherlands).

    Google Scholar 

  • Fabre, Ph. 1932. “Utilization des Forces Electromotrices d'Induction pour l'Enregistrement des Variations de Vitesse des Liquides Conducteurs: un Nouvel Hémodromographe sans Palette.”Compt. Rend.,194, 1097–1098.

    Google Scholar 

  • Frank, O. 1899. “Die Grundform des Arteriellen Pulses.”Z. Biol.,37, 483–526.

    Google Scholar 

  • —. 1927. “Die Theorie der Pulswellen.”Z. Biol.,85, 91–130.

    Google Scholar 

  • Hallock, P. and I. C. Benson. 1937. “Studies on the Elastic Properties of Human Isloated Aortas.”J. Clin. Invest.,16, 595–602.

    Article  Google Scholar 

  • Hamilton, W. F., J. W. Moore, J. M. Kinsman, and R. G. Spurling. 1928. “Simultaneous Determination of the Pulmonary and Systemic Circulation Times in Man and a Figure Related to the Cardiac Output.”Am. J. Physiol.,84, 338–344.

    Google Scholar 

  • Jaeger, M. 1962. “Etude de l'Elasticité et des Tensions de la Carotide de Vache en Comparaison avec l'Aorta et la Coronaire.”Helv. Physiol. Acta,20, 7–24.

    Google Scholar 

  • Kenner, Th. and E. Wetterer. 1962. “Experimentelle Untersuchungen über die Pulsformen und Eigenschwingungen zweiteiliger Schlauchmodelle.”Arch. Ges. Physiol.,275, 594–613.

    Article  Google Scholar 

  • King, A. L. 1946. “Pressure-Volume Relation for Cylindrical Tubes with Elastomeric Walls.”J. Appl. Phys.,17, 501–505.

    Article  Google Scholar 

  • Kulbertus, H. 1963. “Effect of Different Vasomotor Agents on the Visco-elastic Behavior of Arteries of the Muscular Type.”Nature,199, 1193–1194.

    Article  Google Scholar 

  • Morgan, G. W. and J. P. Kiely. 1954. “Wave Propagation in a Viscous Liquid Contained in a Flexible Tube.”J. Acoust. Soc. Am.,26, 323–328.

    Article  MathSciNet  Google Scholar 

  • Pieper, H. P. 1958. “Measurement of Aortic Blood-Flow, with a New Catheter-Tip Flow Meter.”Rev. Sci-Instr.,29, 965–971.

    Article  Google Scholar 

  • Rainville, E. D. 1958.Differential Equations. New York: the Macmillan Publishing Co.

    Google Scholar 

  • Rashevsky, N. 1963. “The Principle of Adequate Design and the Cardiovascular System.”Bull. Math. Biophysics,25, 59–73.

    Article  Google Scholar 

  • Remington, J. W. and W. F. Hamilton. 1945. “The Construction of a Theoretical Cardiac Ejection Curve from the Contour of the Aortic Pressure Pulse.”Am. J. Physiol.,144, 546–556.

    Google Scholar 

  • —, C. B. Noback, W. F. Hamilton, and J. J. Gold. 1948. “Volume Elasticity Characteristics of the Human Aorta and the Prediction of the Stroke Volume from the Pressure Pulse.”Am. J. Physiol.,153, 298–302.

    Google Scholar 

  • Treloar, L. R. G. 1958. “The Physics of Rubber Elasticity.” Oxford: Clarendon Press.

    Google Scholar 

  • Wetterer, E. and H. Pieper, 1953. “Ueber die Gesamtelastizität des arteriellen Windkessels und ein experimentelles Verfahren zu ihrer Bestimmung am lebenden Tier.”Z. Biol.,105, 23–57.

    Google Scholar 

  • Wezler, K. 1938. “Der Ruhezustand des Kreislaufes.”Z. Biol.,98, 438–463.

    Google Scholar 

  • Womersley, J. R. 1955. “Oscillatory Motion of a Viscous Liquid in a Thin Walled Elastic Tube.”Phil. Mag.,46, 199–221.

    MATH  MathSciNet  Google Scholar 

  • —. 1957. “Oscillatory Flow in Arteries: the Constrained Elastic Tube as a Model of Arterial Flow and Pulse Transmission.”Phys. Med. Biol.,2, 178–187.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewi, P.J. Forced oscillations in a windkessel model. Bulletin of Mathematical Biophysics 27, 271–280 (1965). https://doi.org/10.1007/BF02478404

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02478404

Keywords

Navigation