The bulletin of mathematical biophysics

, Volume 3, Issue 2, pp 39–55 | Cite as

Weber's theory of the kernleiter

  • Alvin M. Weinberg


The potential distribution about a kernleiter is determined according to Weber's method. It is shown that the distribution reduces to the solution of a telegrapher's equation when the volume of the external medium is small. The velocity of propagation as a function of the external volume is determined approximately. This involves the solution of the equation
$$\frac{{\left[ {Y_0 (k\xi )} \right]^\prime }}{{\left[ {J_0 (k\xi )} \right]^\prime }} = \frac{{\left[ {\xi ^{ - a} Y_0 (\xi )} \right]^\prime }}{{\left[ {\xi ^{ - a} J_0 (\xi )} \right]^\prime }}$$
whereY 0 andJ 0 are bessel functions, and roots of this equation are tabulated. The velocities thus found reduce to Lillie's values determined experimentally on the iron wire when the conducting medium is small. Deviations from these values are predicted for larger volumes.


Potential Distribution External Medium External Resistance Mathematical Biophysics Order Root 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bishop, G. H. 1937. “La theorie des Circuits Locaux Permet-elle de Prévoir la Forme du Potentiel d'Action?”Arch. Internat. Physiol.,45, 273–297.Google Scholar
  2. Blair, H. A. 1932. “Stimulation of Nerve by Electrical Currents. I.”Jour. Gen. Physiol.,15, 709–732.CrossRefGoogle Scholar
  3. Bogue, J. Y., and H. Rosenberg. 1934. “Rate of Development and Spread of Electrotonus.”Jour. Physiol.,82, 353–367.Google Scholar
  4. British Association Mathematical Tables, VI. 1937. Cambridge: University Press.Google Scholar
  5. Carslaw, H. S. 1906.Introduction to the theory of Fourier's Series and Integrals and the Mathematical Theory of the Conduction of Heat. New York: Mac-Millan Company.MATHGoogle Scholar
  6. Carslaw, H. S., and J. C. Jaeger. 1940. “Some Two-Dimensional Problems in Conduction of Heat with Circular Symmetry.”Proc. Lond. Math. Soc.,46, 361–388.MathSciNetMATHGoogle Scholar
  7. Cole, K. S. and H. J. Curtis. 1938. “Electric Impedance of Nitella During Activity.”Jour. Gen. Physiol.,22, 37–64.CrossRefGoogle Scholar
  8. Kalähne, A. 1907. “Ueber die Wurzeln Einiger Zylinderfunktionen und Gewisser aus Ihnen Gebildeter Gleichungen.”Zeit. f. Math. u. Phys. 54, 55–86.Google Scholar
  9. Lillie, R. S. 1925. “Factors Affecting Transmission and Recovery in the Passive Iron Wire Nerve Model.”Jour. Gen. Physiol.,7, 473–507.CrossRefGoogle Scholar
  10. Lillie, R. S. 1936. “The Passive Iron Wire Model of Protoplasmic and Nervous Transmission and its Physiological Analogues.”Biol. Rev. 11, 181–209.Google Scholar
  11. MacMahon, J. 1894. “On the Roots of the Bessel and Certain Related Functions.”Ann. of Math.,9, 23–30.MathSciNetCrossRefGoogle Scholar
  12. Offner, F., A. M. Weinberg and G. Young. 1940. “Nerve Conduction Theory: Some Mathematical Consequences of Bernstein's Model.”Bull. Math. Biophysics,2, 89–103.MathSciNetCrossRefGoogle Scholar
  13. Sasaki, S. 1914. “On the Roots of\(\frac{{Y_n (kr)}}{{J_n (kr)}} - \frac{{Y'_{1n} (ka)}}{{J'_n (ka)}} = 0\).”Tohuko Math. Journal,5, 45–47.Google Scholar
  14. Smythe, W. R. 1939.Static and Dynamic Electricity. New York: McGraw-Hill.MATHGoogle Scholar
  15. Watson, G. N. 1922.A Treatise on the Theory of Bessel Functions. Cambridge: University Press.MATHGoogle Scholar
  16. Weber, H. 1873a. “Ueber die Stätionaren Strömungen der Elektricität in Cylindern.”Borchardt's Jour. f. Math. 76, 1–20.Google Scholar
  17. Weber, H. 1873b. “Ueber eine Darstellung Willkürlicher Funktionen durch Bessel'sche Funktionen.”Math. Ann. 6, 146–161.MathSciNetCrossRefGoogle Scholar
  18. Weinberg, A. M. 1940. “On the Formal Theory of Nerve Conduction.”Bull Math. Biophysics,2, 127–134.CrossRefGoogle Scholar
  19. Whittaker, E. T., and G. N. Watson. 1940.A Course of Modern Analysis. Cambridge: University Press.Google Scholar
  20. Wilson, F. N., A. G. Macleod and P. S. Barker. 1933.The Distribution of Currents of Action and Injury Displayed by Heart Muscle and other Excitable Tissues. Ann Arbor: University of Michigan Press.Google Scholar

Copyright information

© The University of Chicago Press 1941

Authors and Affiliations

  • Alvin M. Weinberg
    • 1
  1. 1.The University of ChicagoChicagoUSA

Personalised recommendations