Skip to main content
Log in

A theoretical note on exponential flow in the proximal part of the mammalian nephron

  • Published:
The bulletin of mathematical biophysics Aims and scope Submit manuscript

Abstract

On the basis of the experiments of A. M. Walkeret al. (Am. J. Physiol.,134, 580–595, 1941), it is postulated that the fraction of glomerular filtrate reabsorbed up to a given point in the proximal tubule is independent of the rate of filtration. This, combined with the assumption that the proximal tubule is uniform from glomerular to distal end, implies that the volume of flow per unit of time past a given point in the proximal tubule decreases exponentially as a function of distance from the glomerulus. From this it is deduced that the rate of reabsorption of Na+ is proportional to the rate of formation of glomerular filtrate—a result established in clearance experiments. The analogy between a nephron and a catalytic flow reactor is indicated, and it is noted that, in both systems, reaction velocity can depend on the rate of flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Berliner, R. W. 1950. “Renal Excretion of Water, Sodium, Chloride, Potassium, Calcium and Magnesium.”Amer. J. Med.,9, 541–555.

    Article  Google Scholar 

  • Bergmann, F., and S. Dikstein. 1959. “The Theory of the Transfer Through the Walls of Biological Tubes of a Solute in a Moving Fluid.”J. Physiol. (London),145, 14–21.

    Google Scholar 

  • Burgen, A. S. V. 1956. “A Theoretical Treatment of Glucose Reabsorption in the Kidney.”Canad. J. Biochem. Physiol.,34, 466–474.

    Google Scholar 

  • Dole, V. P. 1943. “Back Diffusion of Urea in the Mammalian Kidney.”Amer. J. Physiol.,138, 504–513.

    Google Scholar 

  • Gottschalk, C. W., and M. Mylle. 1959. “Micropuncture Study of the Mammalian Urinary Concentrating Mechanism: Evidence for the Countercurrent Hypothesis.”Amer. J. Physiol.,196, 927–936.

    Google Scholar 

  • Hargitay, B., and W. Kuhn. 1951. “Das Multiplikationsprinzip als Grundlage der Harnkonzentrierung in der Niere.”Z. Electr. u. Angew. Physik Chemie.,55, 539–558.

    Google Scholar 

  • Jakob, M. 1949.Heat Transfer. Vol. I. New York: J. Wiley & Sons, Inc.

    Google Scholar 

  • Kuhn, W., and A. Ramel. 1959. “Activer Salztransport als Möglicher (und Wahrscheinlicher) Einzeleffekt bei der Harnkonzentrierung in der Niere.”Helvet. Chim. Acta,42, 628–660.

    Article  Google Scholar 

  • Lassiter, W. E., C. W. Gottschalk, and M. Mylle. 1961. “Micropuncture Study of Net Transtubular Water Movement of Water and Urea in Nondiuretic Mammalian Kidney.”Amer. J. Physiol.,200, 1139–1146.

    Google Scholar 

  • Mudge, G. H., J. Foulks, and A. Gilman. 1949. “Effect of Urea Diuresis on Renal Excretion of Electrolytes.”Amer. J. Physiol.,58, 218–230.

    Google Scholar 

  • Olson, R. W., R. W. Schuler, and J. M. Smith. 1950. “Oxidation of Sulfur Dioxide. Effect of Diffusion.”Chem. Eng. Progr.,46, 614–624.

    Google Scholar 

  • Rhodin, J. 1958. “Anatomy of Kidney Tubules.” inInternational Review of Cytology, VII, G. H. Bourne and J. F. Danielli, eds.,7, 485–534. New York: Academic Press, Inc.

    Google Scholar 

  • Robinson, J. R. 1954.Reflections on Renal Function. Oxford: Blackwell Scientific Publications.

    Google Scholar 

  • Schmidt-Nielsen, Bodil. 1958. “Urea Excretion in Mammals.”Physiol. Rev.,38, 139–168.

    Google Scholar 

  • Selkurt, E. E. 1954. “Sodium Excretion by the Mammalian Kidney.”Physiol. Rev.,34, 287–333.

    Google Scholar 

  • Sherwood, T. K., and R. L. Pigford. 1952.Absorption and Extraction. New York: McGraw-Hill Book Co., Inc.

    Google Scholar 

  • Smith, H. W. 1951.The Kidney. New York: Oxford University Press.

    Google Scholar 

  • Smith, J. M. 1956.Chemical Engineering Kinetics. New York: McGraw-Hill Book Co., Inc.

    Google Scholar 

  • Solomon, A. K. 1959. “Ion and Water Transport in Single Proximal Tubules of the Necturus Kidney.” InMethods of Isotopic Tracers Applied to the Study of Active Ion Transport. J. Coursaget, ed. London: Pergamon Press.

    Google Scholar 

  • Sperber, I. 1944. “Studies on the Mammalian Kidney.”Zoologiska Bidrag. Uppsala.,22, 249–435.

    Google Scholar 

  • Stoker, J. J. 1950.Nonlinear Vibrations. New York: Interscience Publishers, Inc.

    MATH  Google Scholar 

  • Ullrich, K. J. 1960. “Function of the Collecting Ducts.”Circulation,21, 869–874.

    Google Scholar 

  • Walker, A. M., P. A. Bott, J. Oliver, and M. C. MacDowell. 1941. “The Collection and Analysis of Fluid From Single Nephrons of the Mammalian Kidney.”Amer. J. Physiol.,134, 580–595.

    Google Scholar 

  • Wesson, L. G., Jr. 1954a. “Renal Function and Velocity Effect.”J. Appl. Physiol.,6, 727–730.

    Google Scholar 

  • — 1954b. “A Theoretical Analysis of Urea Excretion by The Mammalian Kidney.”Amer. J. Physiol.,179, 364–371.

    Google Scholar 

  • — 1957. “Glomerular and Tubular Factors in the Renal Excretion of Sodium Chloride.”Medicine,36, 281–396.

    Article  Google Scholar 

  • Wesson, L. G., Jr., and W. P. Anslow, Jr. 1955. “Relationship of Changes in Glomerular Filtration, Plasma Chloride and Bicarbonate Concentrations, and Urinary Osmotic Load to Renal Excretion of Chloride.”Amer. J. Physiol.,180, 237–248.

    Google Scholar 

  • Wirz, H., B. Hargitay, and W. Kuhn. 1951. “Lokalisation des Konzentrierungsprozesses in der Niere durch direkte Kyroskopie.”Helvet. Physiol. et Pharmacol. Acta,9, 196–207.

    Google Scholar 

  • Wirz, H. 1956. “Der Osmotische Drück in den Corticalen Tubuli der Rattenniere.”Helv. Physiol. Acta,14, 353–362.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kelman, R.B. A theoretical note on exponential flow in the proximal part of the mammalian nephron. Bulletin of Mathematical Biophysics 24, 303–317 (1962). https://doi.org/10.1007/BF02477961

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02477961

Keywords

Navigation