Skip to main content
Log in

The distribution of membrane current in nerve with longitudinal linearly increasing applied current

  • Published:
The bulletin of mathematical biophysics Aims and scope Submit manuscript

Abstract

The distribution of membrane current in three models of nerve, when a longitudinal, linearly increasing current is applied, is derived. For the simple core conductor model it is shown that, if the region over which such a current is applied is large compared to the space constant of the model, the membrane current in the mid-portion of the region is a constant, independent of the distance, the time following the application of the current, and the impedance of the membrane. The effect of nonlinear membrane electrical properties is discussed. It is further shown that these conclusions apply equally to the case in which the simple model is surrounded by another concentric sheath (the double cable model). In this case the impedance of the sheath does not influence the membrane current in the mid-polar region. Finally, it is shown that the form of the solution for the saltatory model, for this type of applied current, is identical with that for the simple model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Bishop, G. H., J. Erlanger and H. S. Gasser. 1926. “Distortion of Action Potentials as Recorded from the Nerve Surface”.Am. Jour. Physiol.,78, 592–609.

    Google Scholar 

  • Campbell, G. A. and R. M. Foster. 1942.Fourier Integrals for Practical Applications. New York: Am. Tel. & Tel. Co.

    MATH  Google Scholar 

  • Churchill, Ruel V. 1944.Modern Operational Mathematics in Engineering. New York: McGraw-Hill Co. Inc.

    MATH  Google Scholar 

  • Cole, Kenneth S. 1949. “Some Physical Aspects of Bioelectric Phenomena”.Proc. Nat. Acad. Sci.,35, 558–66.

    Article  Google Scholar 

  • Cole, K. S. and H. J. Curtis. 1940. “Membrane Potential of the Squid Giant Axon during Current Flow”.Jour. Gen. Physiol.,24, 551–63.

    Article  Google Scholar 

  • Cremer, M. 1929. “Erregungsgesetz des Nerven”,Hand. d. norm. u. pathol. Physiol.,9, 244–84.

    Google Scholar 

  • Crescitelli, Frederick. 1951. “Nerve Sheath as a Barrier to the Action of Certain Substances”.Am. Jour. Physiol.,166, 229–40.

    Google Scholar 

  • Curtis, H. J. and K. S. Cole. 1940. “Membrane Action Potentials from the Squid Giant Axon”.Jour. Cell Comp. Physiol.,15, 147–57.

    Article  Google Scholar 

  • Hodgkin, A. L. 1947. “The Membrane Resistance of a Non-medullated Nerve Fibre”.Jour. Physiol.,106, 305–18.

    Google Scholar 

  • Hodgkin, A. L. 1949. “Ionic Exchange and Electrical Activity in Nerve and Muscle”.Arch. des Sci. Physiol.,3, 151–64.

    Google Scholar 

  • Hodgkin, A. L. and A. F. Huxley. 1939. “Action Potentials Recorded from inside a Nerve Fibre”.Nature,144, 710–11.

    Google Scholar 

  • Hodgkin, A. L. and W. A. H. Rushton. 1946. “The Electrical Constants of a Crustancean Nerve Fibre”.Proc. Roy. Soc. Lond. B. 133, 444–79.

    Google Scholar 

  • Hodgkin, A. L., A. F. Huxley and B. Katz. 1949. “Ionic Currents underlying Activity in the Giant Axon of the Squid”.Arch. Sci. Physiol.,3, 129–50.

    Google Scholar 

  • Huxley, A. F. and R. Stämpfli. 1949. “Evidence for Saltatory Conduction in Peripheral Myelinated Nerve Fibres”,Jour. Physiol. 108, 315–39.

    Google Scholar 

  • Katz, B. 1948. “The Electrical Properties of the Muscle Fibre Membrane”.Proc. Roy. Soc. Lond. B.,135, 506–34.

    Article  Google Scholar 

  • Lillie, R. S. 1925. “Factors Affecting the Transmission and Recovery in the Passive Iron Nerve Model”.Jour. Gen. Physiol.,7, 473–507.

    Article  Google Scholar 

  • Lorente de No, R. 1947.“A Study of Nerve Physiology. I” The Studies from the Rockefeller Institute for Medical Research.,131, New York: Rockefeller Inst.

    Google Scholar 

  • Marmont, George. 1949. “Studies on the Axon Membrane. I. A New Method”.Jour. Cell. Comp. Physiol.,34, 351–82.

    Article  Google Scholar 

  • Offner, Franklin, Alvin M. Weinberg and Gale Young. 1940. “Nerve Conduction Theory: Some Mathematical Consequences of Bernstein's Model”.Bull. Math. Biophysics,2, 89–103.

    Article  MathSciNet  Google Scholar 

  • Rashbass, C. and W. A. H. Rushton. 1949. “The Relation of Structure to the Spread of Excitation in the Frog's Sciatic Trunk”.Jour. Physiol.,110, 110–35.

    Google Scholar 

  • Rashevsky, N. 1948.Mathematical Biophysics, Chicago: University of Chicago Press.

    MATH  Google Scholar 

  • Tables of Probability Functions. 1942. Vol. 2. New York: Works Progress Administration.

  • Taylor, Robert E. 1950a. “Effect of Polarization on Conduction Velocity of Frog Nerve and Its Modification by KCl”.Fed. Proc.,9, 124.

    Google Scholar 

  • — 1950b. “Studies of the Effect of Externally Applied Currents on Frog Nerve”. Doctoral Dissertation, University of Rochester, Rochester, New York.

    Google Scholar 

  • — 1951. “The Absence of Potential Changes during the Contractile Process”.Am. Jour. Physiol. Proc.,167, 831.

    Google Scholar 

  • Weinberg, A. M. 1941. “Weber's Theory of the Kernleiter”.Bull. Math. Biophysics,3, 39–55.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taylor, R.E. The distribution of membrane current in nerve with longitudinal linearly increasing applied current. Bulletin of Mathematical Biophysics 14, 265–292 (1952). https://doi.org/10.1007/BF02477817

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02477817

Keywords

Navigation