Skip to main content
Log in

On the theory of the spatial organization of macromolecules in connective tissue

  • Published:
The bulletin of mathematical biophysics Aims and scope Submit manuscript

Abstract

The radial distribution function characterizing the spatial organization of the long fibrils of connective tissue is obtained by mathematical analysis of molecular models. The models are based on the assumption that polymeric chains form bridges between the fibrils, thereby providing the long range interactions responsible for the quasi-ordered spatial disposition of the fibrils. The theory is applied to rabbit cornea for which an empirical radial distribution has been obtained previously by analysis of electron micrographs. General agreement is found between theory and experiment for parameter values that are thought to be representative of stroma. The analysis constitutes a step toward the development of the physical basis of the ultrastructure of connective tissue and the way in which that structure affects physiological behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Berlin, T. H. and M. Kac. 1952. “The Spherical Model of a Ferromagnet.”Phys. Rev.,86, 821–835.

    Article  MATH  MathSciNet  Google Scholar 

  • Bernardi, G. 1957. “Size and Shape of Cartilage Mucoprotein.”Nature,180, 93–94.

    Article  Google Scholar 

  • — 1957. “The Molecular Size, Shape and Weight of Mucoprotein from Cartilage.”Biochem. Biophys. Acta.,26, 47–52.

    Article  Google Scholar 

  • Cessi, C. and G. Bernardi. 1965. “The Kinetics of Enzymatic Degradation and the Structure of Protein Polysaccharide Complexes of Cartilage,” inStructure and Function of Connective and Skeletal Tissue. NATO Advanced Study Inst. London: Butter-worths.

    Google Scholar 

  • Clark, Janet H. 1932. “A Method for Measuring Elasticityin Vivo and the Results Obtained on the Eyeball at Different Intraocular Pressures.”Am. J. Physiol.,101, 474–481.

    Google Scholar 

  • Desloge, Edward H. 1966.Statistical Physics, p. 18. New York: Holt Rinehart and Winston, Inc.

    Google Scholar 

  • Duke-Elder, S. Ed. 1961.A System of Ophthalmology. Vol. II, pp. 106–107. St. Louis, Missouri: C. V. Mosby Co., Pub.

    Google Scholar 

  • Francois, J., M. Rabaey and G. Vandermeerssche. 1954. “L'ultrastructure des tissus oculaires au microscope électronique. II. Etude de la cornée et de la sclérotique.”Ophthalmologica,120, 74–85.

    Article  Google Scholar 

  • Goldman, J. N. and G. B. Benedek. 1967. “The Relationship Between Morphology and Transparency in the Nonswelling Corneal Stroma of the Shark.”J. Invest. Ophthal.,6, 574–600.

    Google Scholar 

  • Hart, R. W. and R. A. Farrell. 1969. “Light Scattering in the Cornea.”J. Opt. Soc. Am.,59, (June), 766–774.

    Article  Google Scholar 

  • Huxley, H. E. 1965. “The Mechanism of Muscular Contraction.”Sci. Am. (Dec.), p. 21.

  • Jakus, M. A. 1964.Ocular Fine Structure, plate 25. Boston: Little Brown & Company.

    Google Scholar 

  • James, H. M. 1947. “Statistical Properties of Networks of Flexible Chains.”J. Chem. Phys.,15, 651–668.

    Article  MathSciNet  Google Scholar 

  • Langham, M. E., R. W. Hart and J. Cox. 1969. “The Interaction of Collagen and Mucopolysaccharides,” inThe Cornea. M. E. Langham, ed. Baltimore: Johns Hopkins University Press (in press).

    Google Scholar 

  • Laurent, T. and A. Anseth. 1961. “Studies on Corneal Mucopolysaccharides.”Exp. Eye Res.,1, 99–105.

    Article  Google Scholar 

  • Mathews, M. B. 1965. “The Interaction of Collagen and Acid Mucopolysaccharides.”Biochem J.,96, 710–716.

    Google Scholar 

  • — 1967. “Biophysical Aspects of Acid Mucopolysaccharides Relevant to Connective Tissue Structure and Function,” inConnective Tissue, pp. 304–329. B. M. Wagner and D. E. Smith, eds. Baltimore: Williams and Wilkins.

    Google Scholar 

  • Mathews, M. B. and I. Lozaityte. 1958. “Sodium Chondroitin Sulfate-Protein Complexes of Cartilage. I. Molecular Weight and Shape.”Arch. Biochem. Biophys.,74, 158.

    Article  Google Scholar 

  • Maurice, D. M. 1957. “The Structure and Transparency of the Cornea.”J. Physiol.,136, 263–286.

    Google Scholar 

  • — 1962. Chap. 6 ofThe Eye. Vol. I, H. Davson, Ed., New York: Academic Press.

    Google Scholar 

  • Montroll, E. W., T. H. Berlin and R. W. Hart. 1952. “Fonctions Delta et Intégrals Gaussiennes en Mécanique Statistique.”Extr. Comptes Rendus, Réunion de Chemie Physique, pp. 211–223.

  • Partridge, S. M., H. F. Davis and G. S. Adair. 1960. “The Constitution of the Chondroitin Sulphate-Protein Complex in Cartilage.”Biochem J.,79, 15–26.

    Google Scholar 

  • Schubert, M. and D. Hamerman. 1968.A Primer on Connective Tissue Biochemistry (especially Chapters 3 and 5). Philadelphia: Lea and Febingek.

    Google Scholar 

  • Schwarz, W. and D. Graf Keyserlingk. 1966. “Über Die Feinstruktur Der Menschlichen Cornea, Mit Besonderer Berücksichtigung Des Problems Der Transparenz.”Z. Zellforsch.,73, 540–548.

    Article  Google Scholar 

  • Tanford, Charles. 1967.Physical Chemistry of Macromolecules, p. 167. New York: John Wiley and Sons.

    Google Scholar 

  • Webber, R. V. and S. T. Bayley. 1956. “Some Observations on the Molecular Form of Chondroitin Sulphate.”Canad. J. Biochem. and Biophys.,34, 963–1005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farrell, R.A., Hart, R.W. On the theory of the spatial organization of macromolecules in connective tissue. Bulletin of Mathematical Biophysics 31, 727–760 (1969). https://doi.org/10.1007/BF02477784

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02477784

Keywords

Navigation