The bulletin of mathematical biophysics

, Volume 31, Issue 4, pp 727–760 | Cite as

On the theory of the spatial organization of macromolecules in connective tissue

  • R. A. Farrell
  • R. W. Hart


The radial distribution function characterizing the spatial organization of the long fibrils of connective tissue is obtained by mathematical analysis of molecular models. The models are based on the assumption that polymeric chains form bridges between the fibrils, thereby providing the long range interactions responsible for the quasi-ordered spatial disposition of the fibrils. The theory is applied to rabbit cornea for which an empirical radial distribution has been obtained previously by analysis of electron micrographs. General agreement is found between theory and experiment for parameter values that are thought to be representative of stroma. The analysis constitutes a step toward the development of the physical basis of the ultrastructure of connective tissue and the way in which that structure affects physiological behavior.


Fibril Free Energy Collagen Fibril Radial Distribution Function Reference Configuration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Berlin, T. H. and M. Kac. 1952. “The Spherical Model of a Ferromagnet.”Phys. Rev.,86, 821–835.MATHMathSciNetCrossRefGoogle Scholar
  2. Bernardi, G. 1957. “Size and Shape of Cartilage Mucoprotein.”Nature,180, 93–94.CrossRefGoogle Scholar
  3. — 1957. “The Molecular Size, Shape and Weight of Mucoprotein from Cartilage.”Biochem. Biophys. Acta.,26, 47–52.CrossRefGoogle Scholar
  4. Cessi, C. and G. Bernardi. 1965. “The Kinetics of Enzymatic Degradation and the Structure of Protein Polysaccharide Complexes of Cartilage,” inStructure and Function of Connective and Skeletal Tissue. NATO Advanced Study Inst. London: Butter-worths.Google Scholar
  5. Clark, Janet H. 1932. “A Method for Measuring Elasticityin Vivo and the Results Obtained on the Eyeball at Different Intraocular Pressures.”Am. J. Physiol.,101, 474–481.Google Scholar
  6. Desloge, Edward H. 1966.Statistical Physics, p. 18. New York: Holt Rinehart and Winston, Inc.Google Scholar
  7. Duke-Elder, S. Ed. 1961.A System of Ophthalmology. Vol. II, pp. 106–107. St. Louis, Missouri: C. V. Mosby Co., Pub.Google Scholar
  8. Francois, J., M. Rabaey and G. Vandermeerssche. 1954. “L'ultrastructure des tissus oculaires au microscope électronique. II. Etude de la cornée et de la sclérotique.”Ophthalmologica,120, 74–85.CrossRefGoogle Scholar
  9. Goldman, J. N. and G. B. Benedek. 1967. “The Relationship Between Morphology and Transparency in the Nonswelling Corneal Stroma of the Shark.”J. Invest. Ophthal.,6, 574–600.Google Scholar
  10. Hart, R. W. and R. A. Farrell. 1969. “Light Scattering in the Cornea.”J. Opt. Soc. Am.,59, (June), 766–774.CrossRefGoogle Scholar
  11. Huxley, H. E. 1965. “The Mechanism of Muscular Contraction.”Sci. Am. (Dec.), p. 21.Google Scholar
  12. Jakus, M. A. 1964.Ocular Fine Structure, plate 25. Boston: Little Brown & Company.Google Scholar
  13. James, H. M. 1947. “Statistical Properties of Networks of Flexible Chains.”J. Chem. Phys.,15, 651–668.MathSciNetCrossRefGoogle Scholar
  14. Langham, M. E., R. W. Hart and J. Cox. 1969. “The Interaction of Collagen and Mucopolysaccharides,” inThe Cornea. M. E. Langham, ed. Baltimore: Johns Hopkins University Press (in press).Google Scholar
  15. Laurent, T. and A. Anseth. 1961. “Studies on Corneal Mucopolysaccharides.”Exp. Eye Res.,1, 99–105.CrossRefGoogle Scholar
  16. Mathews, M. B. 1965. “The Interaction of Collagen and Acid Mucopolysaccharides.”Biochem J.,96, 710–716.Google Scholar
  17. — 1967. “Biophysical Aspects of Acid Mucopolysaccharides Relevant to Connective Tissue Structure and Function,” inConnective Tissue, pp. 304–329. B. M. Wagner and D. E. Smith, eds. Baltimore: Williams and Wilkins.Google Scholar
  18. Mathews, M. B. and I. Lozaityte. 1958. “Sodium Chondroitin Sulfate-Protein Complexes of Cartilage. I. Molecular Weight and Shape.”Arch. Biochem. Biophys.,74, 158.CrossRefGoogle Scholar
  19. Maurice, D. M. 1957. “The Structure and Transparency of the Cornea.”J. Physiol.,136, 263–286.Google Scholar
  20. — 1962. Chap. 6 ofThe Eye. Vol. I, H. Davson, Ed., New York: Academic Press.Google Scholar
  21. Montroll, E. W., T. H. Berlin and R. W. Hart. 1952. “Fonctions Delta et Intégrals Gaussiennes en Mécanique Statistique.”Extr. Comptes Rendus, Réunion de Chemie Physique, pp. 211–223.Google Scholar
  22. Partridge, S. M., H. F. Davis and G. S. Adair. 1960. “The Constitution of the Chondroitin Sulphate-Protein Complex in Cartilage.”Biochem J.,79, 15–26.Google Scholar
  23. Schubert, M. and D. Hamerman. 1968.A Primer on Connective Tissue Biochemistry (especially Chapters 3 and 5). Philadelphia: Lea and Febingek.Google Scholar
  24. Schwarz, W. and D. Graf Keyserlingk. 1966. “Über Die Feinstruktur Der Menschlichen Cornea, Mit Besonderer Berücksichtigung Des Problems Der Transparenz.”Z. Zellforsch.,73, 540–548.CrossRefGoogle Scholar
  25. Tanford, Charles. 1967.Physical Chemistry of Macromolecules, p. 167. New York: John Wiley and Sons.Google Scholar
  26. Webber, R. V. and S. T. Bayley. 1956. “Some Observations on the Molecular Form of Chondroitin Sulphate.”Canad. J. Biochem. and Biophys.,34, 963–1005.Google Scholar

Copyright information

© N. Rashevsky 1968

Authors and Affiliations

  • R. A. Farrell
    • 1
  • R. W. Hart
    • 1
  1. 1.Applied Physics LaboratoryThe Johns Hopkins UniversitySilver Spring

Personalised recommendations