Skip to main content

Mathematical models of threshold phenomena in the nerve membrane

Abstract

The types of mathematical model which have been used to represent all-or-none behavior in the nerve membrane may be classified as follows: (1) thediscontinuous threshold phenomenon, in which differential equations with discontinuous functions provide both a discontinuity of response as a function of stimulus intensity at threshold and a finite maximum latency, (2) thesingular-point threshold phenomenon which exists in a phase space having analytic functions in its differential equations and having a singular point with one characteristic root positive and the rest with negative real parts, the latency being unbounded, and (3) thequasi threshold phenomenon, which has a finite maximum latency and continuous functions, but neither a true discontinuity in response nor an exact threshold. Several models of the nerve membrane in the literature are classified accordingly, and the applicability of the different types of threshold phenomena to the membrane is discussed, including an extension to a stochastic model.

This is a preview of subscription content, access via your institution.

Literature

  1. Blair, E. and J. Erlanger. 1933. “A Comparison of the Characteristics of Axons through their Individual Electrical Responses”.Am. Jour. Physiol.,106, 524–64.

    Google Scholar 

  2. Bonhoeffer, K. F. 1941. “Über die Aktivierung von Passiven Eisen in Salpetersaüre.”Ztschr. für Elektrochemie,47, 147–50.

    Google Scholar 

  3. — 1948. “Activation of Passive Iron as a Model for the Excitation of Nerve.”Jour. Gen. Physiol.,32, 69–91.

    Article  Google Scholar 

  4. — 1953. “Modelle der Nervenerregung.”Die Naturwissenschaften,40, 301–11.

    Article  Google Scholar 

  5. Cole, K. S. 1949. “Dynamic Electrical Characteristics of the Squid Axon Membrane.”Arch. Sci. Physiol.,3, 253–58.

    Google Scholar 

  6. — 1954. “Membrane Excitation of the Hodgkin-Huxley Axon.”Fed. Proc.,13, 28.

    Google Scholar 

  7. Cole, K. S., H. A. Antosiewicz, and P. Rabinowitz. 1955. “Automatic Computation of Nerve Excitation.”Jour. Indust. Appl. Math. In press.

  8. Fatt, P. and B. Katz. 1952. “Spontaneous Subthreshold Activity at Motor Nerve Endings.”Jour. Physiol.,117, 109–28.

    Google Scholar 

  9. Hill, A. V. 1936. “Excitation and Accommodation in Nerve.”Proc. Roy. Soc. Lond., B.,119, 305–55.

    Google Scholar 

  10. Hodgkin, A. L. 1952. “Measurement of Current-Voltage Relations in the Membrane of the Giant Axon ofLoligo.”Jour. Physiol.,116, 424–48.

    Google Scholar 

  11. — and A. F. Huxley. 1952. “A Quantitative Description of Membrane Current and Its Application to Conduction and Excitation in Nerve.”Jour. Physiol.,117, 500–544.

    Google Scholar 

  12. ——, and B. Katz. 1949. “Ionic Currents Underlying Activity in the Giant Axon of the Squid.”Arch. Sci. Physiol.,3, 129–50.

    Google Scholar 

  13. Johnson, F. H., H. Eyring, and M. J. Polissar. 1954.The Kinetic Basis of Molecular Biology. New York: J. Wiley and Sons, Inc.

    Google Scholar 

  14. Johnson, J. B. 1928. “Thermal Agitation of Electricity in Conductors.”Phys. Rev.,32, 97–109.

    Article  Google Scholar 

  15. Karreman, C. 1951. “Contributions to the Mathematical Biology of Excitation with Particular Emphasis on Changes in Membrane Permeability and on Threshold Phenomena.”Bull. Math. Biophysics,13, 189–243.

    Article  Google Scholar 

  16. — and H. D. Landahl. 1952. “On the Mathematical Biology of Excitation Phenomena.”Cold Spring Harbor Symp. Quant. Biol.,17, 293–97.

    Google Scholar 

  17. — and —. 1953. “On Spontaneous Discharges Obtained from a Physicochemical Model of Excitation”.Bull. Math. Biophysics,15, 83–91.

    Article  Google Scholar 

  18. Lefschetz, S. 1948.Lectures on Differential Equations. Princeton: Princeton University Press.

    MATH  Google Scholar 

  19. Lotka, A. J. 1925.Elements of Physical Biology. Baltimore: Williams and Wilkins Co.

    MATH  Google Scholar 

  20. Marmont, G. 1949. “Studies on the Axon Membrane. I. A New Method.”Jour. Cell. Comp. Physiol.,34, 351–82.

    Article  Google Scholar 

  21. Minorsky, N. 1947.Introduction to Non-linear Mechanics. Ann Arbor: J. W. Edwards.

    Google Scholar 

  22. Nyquist, H. 1928. “Thermal Agitation of Electrical Charge in Conductors.”Phys. Rev.,32, 110–13.

    Article  Google Scholar 

  23. Offner, F., A. Weinberg, and G. Young. 1940. “Nerve Conduction Theory: Some Mathematical Consequences of Bernstein's Model.”Bull. Math. Biophysics,2, 89–103.

    MathSciNet  Article  Google Scholar 

  24. Pecher, C. 1939. “La Fluctuation d'Excitabilité de la Fibre Nerveuse.”Arch. Internat. Physiol.,49, 129–52.

    Google Scholar 

  25. Petrowsky, I. 1934. “Über das Verhalten der Integralkurven eines Systems gewöhnlicher Differentialgleichungen in der Nähe eines singulären Punktes.”Recueil Math.,41, 107–56.

    MATH  Google Scholar 

  26. Rashevsky, N. 1933. “Outline of a Physico-mathematical Theory of Excitation and Inhibition.”Protoplasma,20, 42–56.

    Google Scholar 

  27. — 1948.Mathematical Biophysics. Rev. Ed., Chicago: University of Chicago Press.

    MATH  Google Scholar 

  28. — 1954. “Topology and Life: In Search of General Mathematical Principles in Biology and Sociology”.Bull. Math. Biophysics,16, 317–48.

    MathSciNet  Google Scholar 

  29. Rushton, W. A. H. 1938. “Initiation of the Propagated Disturbance”.Proc. Roy. Soc. Lond., B.,124, 210–43.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

FitzHugh, R. Mathematical models of threshold phenomena in the nerve membrane. Bulletin of Mathematical Biophysics 17, 257–278 (1955). https://doi.org/10.1007/BF02477753

Download citation

Keywords

  • Phase Space
  • Singular Point
  • Saddle Point
  • Phase Plane
  • Squid Giant Axon