The bulletin of mathematical biophysics

, Volume 23, Issue 4, pp 355–376 | Cite as

Dimensional analysis in mathematical biology I. General discussion

  • Walter R. Stahl


Dimensional analysis is discussed from the viewpoint of its basic group properties and shown to be an algebraic Abelian group that is useful for analysis of physical measurements. The application of the method to various types of equations and the formulation of previously unclassified dimensions are discussed. Functional dimensional analysis is applied to the problems of cell size and biomass proliferation; future applications are also noted. A number of dimensionless terms have been formulated for cellular physiochemical phenomena. They apparently represent the first systematic study of biological dimensionless numbers recorded in the literature. A dimensionless proliferation law is suggested. A brief analysis of the physical dimensionality associated with information measures is carried out. Entropy and “information” are shown to be completely different in their dimensional meaning; other informational measures of possible interest in biology are proposed. The dimensional coding and computor analysis of biomathematical equations is suggested.


Dimensional Analysis Dimensional Method Protoplasmic Streaming Diffusion Force Dimensional Consideration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Birkhoff, G. D. 1960.Hydrodynamics, A study in Logic, Fact and Similitude. 2nd ed. Princeton: Princeton University Press.zbMATHGoogle Scholar
  2. Boucher, D. F., and G. E. Alves. 1959. “Dimensionless Numbers.”Chem. Eng. Prog.,55(9): 55–64.Google Scholar
  3. Brachet, J., and A. E. Mirsky. 1960.The Cell: Biochemistry, Physiology, Morphology, Vol. I & II. New York: The Academic Press.Google Scholar
  4. Bridgman, P. W. 1922.Dimension Analysis. New Haven: Yale University Press.Google Scholar
  5. Brillouin, L. 1956.Science and Information Theory. New York: The Academic Press.zbMATHGoogle Scholar
  6. Bull, H. B. 1951.Physical Biochemistry. 2nd ed. New York: John Wiley & Sons, Inc.Google Scholar
  7. Cherry, C. 1956.Symposium on Information Theory. London: Butterworths.zbMATHGoogle Scholar
  8. Cowling, T. G. 1957.Magnetohydrodynamics. New York: Interscience Publications.zbMATHGoogle Scholar
  9. D'yakonov, G. K. 1956.Voprosy Teorii Podobiya v Oblasti Fiziko-Khimicheskikh Protessov. (Problems of the Theory of Similitude in the Area of Physico-Chemical Processes.) Moscow: Acad. Sci. USSR.Google Scholar
  10. Eirich, F. R. 1956.Rheology Theory and Application, Vol. I. New York: The Academic Press.Google Scholar
  11. Esnault-Pelterie, R. 1950.Dimensional Analysis. Translation from French, F. Rouge, Lausanne.Google Scholar
  12. Ford, E. H. R. 1959.Growth,23, 191–204.Google Scholar
  13. Fourier, J. B. J. 1822.Theorie Analytique de la Chaleur. Translation from French, 1878. London: Cambridge University Press.Google Scholar
  14. Günther, B., and E. Guerra. 1955, 1956. (Cited in Rashevsky, N.,Mathematical Biophysics, Vol. II, p. 291, New York: Dover Publications, Inc., 1960.)Google Scholar
  15. Huntley, H. E. 1953.Dimensional Analysis. New York: Reinhart & Co.zbMATHGoogle Scholar
  16. Keller, E. G., and R. E. Doherty. 1961.Mathematics of Modern Engineering, Vol. I. New York: Dover Publications, Inc.Google Scholar
  17. Kirpichev, M.V. 1953.Teoriya Podobiya. (Theory of Similitude.) Moscow: Publ. Acad. Sci. USSR.Google Scholar
  18. Klein, F. 1939.Geometry. New York: Dover Publications, Inc.zbMATHGoogle Scholar
  19. Klinkenberg, A., and H. H. Mooy. 1948. “Dimensionless Groups in Fluid Friction, Heat and Material Transfer.”Chem. Eng. Prog.,44(1): 17–36.Google Scholar
  20. Landahl, H. D. (1959). “Biological Periodicities, Mathematical Biology and Aging.” Chap. 3 inAging and the Individual, J. E. Birren, Ed. Chicago: University of Chicago Press.Google Scholar
  21. Langhaar, H. L. 1951.Dimensional Analysis and the Theory of Models. New York: John Wiley & Sons, Inc.Google Scholar
  22. Levy, M. 1952.Annals N. Y. Acad. Sci.,55, 51.Google Scholar
  23. Luce, R. D. 1960. “The Theory of Selective Information and Some of Its Behavioral Applications.” Chap. 1 inDevelopments in Mathematical Psychology. Glencoe (Ill.): Free Press.Google Scholar
  24. Mazia, D. 1960.Second Conference on Mechanisms of Cell Division, Annals N. Y. Acad. Sci.,90, 455–469.Google Scholar
  25. Murphy, G. 1950.Similitude in Engineering. New York: Ronald Press.Google Scholar
  26. Newton, I. 1686.Principia Mathematica, 2, section 7.Google Scholar
  27. Nogid, L. M. 1959.Teoriya Podobiya i Razmernostey. (Theory of Similarity and Dimensions.) Lengingrad: Gos. Syuz. Sudo Prom.Google Scholar
  28. Osgood, E. E. 1952.Pediatrics,15, 51.Google Scholar
  29. Osgood, E. E. 1960. Unpublished Report from the Dept. of Medicine, Univ. of Oregon Medical School, Portland.Google Scholar
  30. Rashevsky, N. 1958. “Mathematical Approach to Fundamental Phenomena of Biology.” Chap. 10 inRadiation Biology and Medicine, W. D. Claus, Ed. Reading (Mass.): Addison-Wesley Publ. Co., Inc.Google Scholar
  31. — 1960.Mathematical Biophysics. 2rd ed. Vol. I & II. New York: dover Publications, Inc.zbMATHGoogle Scholar
  32. Rayleigh, Lord. 1915.Nature. 95, 66.Google Scholar
  33. Reiner, J. M. 1960. “Biophysics.” Chap. 31 inFundamental Formulas of Physics, D. H. Menzel, Ed. New York: Dover Publications, Inc.Google Scholar
  34. Reznyakov, A. B. 1959.Metod Podobiya. (Method of Similitude.) Alma Atla: Publ. Acad. Sci. Kazakh. SSR.Google Scholar
  35. Robertson, T. B. 1923.The Chemical Basis of Growth and Senescence. Philadelphia: Lippincott.Google Scholar
  36. Sacher, G. A. 1956.Radiology,67, 250.Google Scholar
  37. Schmalhausen, J. 1927.Arch. Entwcklungsmechn. Organ.,109, 455. (Cited by Weiss.)CrossRefGoogle Scholar
  38. Sedov, L. I. 1959.Similarity and Dimensional Methods in Mechanics. (Translated from Russian.) New York and London: The Academic Press.zbMATHGoogle Scholar
  39. Shock, N. W., and M. F. Morales, 1942. “A Fundamental Form for the Differenial Equation of Colonial and Organism Growth.”Bull. Math. Biophysics,4, 63–71.MathSciNetGoogle Scholar
  40. Thompson, D'Arcy W. (Reprinted 1959)On Growth and Form. 2nd ed. Vol. I & II. Cambridge University PressGoogle Scholar
  41. Thun, R. E. 1960. “On Dimensional Analysis.”IBM. J. Res. & Dev.,4(3), 349–356.zbMATHMathSciNetCrossRefGoogle Scholar
  42. Venikov, V. A. 1956.Fizicheskoye Modelirovaniye Elektrotricheskikh Sistem. (Physical Modeling of Electrical Systems.) Moscow: Gos. Energ. Izd.Google Scholar
  43. von Bertalanffy, L. 1941.Biol. Zentr., 61, 510 (Cited by Weiss.)Google Scholar
  44. —. 1957.Quart. Rev. Biol.,32, 217.CrossRefGoogle Scholar
  45. von Karman, T. 1954.Aerodynamics. Ithaca: Cornell University Press.zbMATHGoogle Scholar
  46. Weiss, P., and J. Kavanau. 1957.J. Gen. Physiol.,41, 1–47.CrossRefGoogle Scholar
  47. Yockey, H. al. 1958.Symposium on Information Theory in Biology. New York: Pergamon Press.Google Scholar

Copyright information

© University of Chicago 1961

Authors and Affiliations

  • Walter R. Stahl
    • 1
  1. 1.Biomathematics ProgramOregon State UniversityCorvallis

Personalised recommendations