Matériaux et Construction

, Volume 3, Issue 2, pp 81–84 | Cite as

Some factors influencing the long term strength of concrete

  • B. P. Hughes
  • J. E. Ash
Article

Summary

Conventional creep and crushing tests are usually concerned with the effects of loadings which are applied during relatively short periods of a few minutes. However, gradual applications of the loading, especially during the initial stages, can produce increases in the ultimate strength of the concrete due to a form of solid body compaction which can the take place. The paper describes the increases in strength which have been obtained with mortars and concretes made with Thames Valley aggregates.

Keywords

SAHA Cement Content Ultimate Compressive Strength Term Load Discontinuity Stress 

Résumé

Les essais traditionnels de fluage et d'écrasement sont ordinairement liés aux effects de charge de durée relativement courte (quelques minutes). Mais des charges graduellement appliquées, en particulier dans la première période de l'essai, peuvent déterminer un accroissement de la résistance du béton dû en quelque sorte à un compactage du matériau produit par la charge. Cet article rend compte des augmentations de résistance qu'on a ainsi obtenues pour des mortiers et des bétons confectionnés avec des agrégats de la vallée de la Tamise.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Hsu, T. T. C.Mathematical analysis of shrinkage stresses in a model of hardened concrete. A.C.I. Journal (Proc. Vol. 60), 1963, pp. 371–388.Google Scholar
  2. [2]
    Glucklich, J.The effect of microcracking on the time dependent deformations and the long-term strength of concrete. International Conference on the Structure of Concrete. London 1965.Google Scholar
  3. [3]
    Newman, K., Newman, J.Failure theories and design criteria for plain concrete. Conference on Structure, Solid Mechanics and Engineering Design in Civil Engineering Materials. Southampton 1969.Google Scholar
  4. [4]
    Rüsch, H.Physical problems in the testing of concrete. C. & C. A. Library translation No. cj. 86 (3/60).Google Scholar
  5. [5]
    Washa, G. W., Fluck, P. G.Effect of sustained loading on-the strength and modulus of elasticity of concrete. A.C.I. Journal (Proc. Vol. 47), 1950, pp. 693–700.Google Scholar
  6. [6]
    Freudenthal, A. M., Roll F.Creep and creep recovery of concrete at high compressive stress. A.C.I. Journal (Proc. Vol 55), 1958, pp. 1111–1120.Google Scholar
  7. [7]
    Coutinho, A. D. S.Note sur la rupture du béton maintenu à une contrainte constance. RILEM, no 7, 1969, pp. 49–57.Google Scholar
  8. [8]
    B. S. 1610.—Methods for the load verification of testing machines. British Standards Institution, London.Google Scholar
  9. [9]
    Hughes, B. P.The rational design of high quality concrete mixes. Concrete, Vol. 2, no 5, May 1968, pp. 212–221.Google Scholar
  10. [10]
    Chaplin, T. K.Shearing, dilatancy and crushing phenomena in granular materials. Conference on Structure, Solid Mechanics and Engineering Design in Civil Engineering Materials. Southampton 1969.Google Scholar
  11. [11]
    Davis, R. E., Davis, H. E., Hamilton, J. E.Plastic flow of concrete under sustained stress. A.S.T.M. Proc Vol. 34 (II), 1934, pp. 354–386.Google Scholar
  12. [12]
    Sawko, F., Saha, G. P.Fatiges of concrete and its effect upon prestressed concrete beams. Magazine of Concrete Research. Vol. 20, no 62, March 1968, pp. 21–30.Google Scholar

Copyright information

© Secrétariat de Rédaction 1970

Authors and Affiliations

  • B. P. Hughes
    • 1
  • J. E. Ash
    • 2
  1. 1.Department of Civil EngineeringThe University of BirminghamU.K.
  2. 2.The University of BirminghamU.K.

Personalised recommendations