Advertisement

Partial sums of orthonormal bases preserving positivity—And martingales

  • J. L. Denny
  • C. K. Abbey
Article

Abstract

We characterize, for finite measure spaces, those orthonormal bases with the following positivity property: if f is a non-negative function, then the partial sums in the expansion of f are non-negative. The bases are necessarily generalized Haar functions and the partial sums are a martingale closed on the right by f.

Math Subject Classifications

Primary 42C10 42C20 secondary 60G46 

Keywords and Phrases

Haar series martingale sums 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Barret, H.H., Denny, J.L., Wagner, R.F., and Myers, K.J. (1995).Objective assessment of image quality, II. Fisher information, Fourier crosstalk, and figures of merit for task performance,J. Opt. Soc. Am. A 12(5), 834–852.CrossRefGoogle Scholar
  2. [2]
    Daubechies, I. (1992).Ten Lectures on Wavelets, CBMS-NSF Series in Appl. Math., SIAM Publ., Philadelphia.MATHGoogle Scholar
  3. [3]
    Durrett, R. (1991).Probability: Theory and Examples, Wadsworth & Brooks/Cole, Pacific Grove, CA.MATHGoogle Scholar
  4. [4]
    Karatzas, I. and Shreve, S.(1991).Brownian Motion and Stochastic Calculus, 2nd ed., Springer-Verlag, New York.MATHGoogle Scholar
  5. [5]
    Loève, M. (1963).Probability Theory, 3rd ed., D. van Nostrand, Princeton, NJ.MATHGoogle Scholar
  6. [6]
    Shiryayev, A.N. (1984).Probability, Springer-Verlag, New York.MATHGoogle Scholar

Copyright information

© Birkhäuser Boston 1998

Authors and Affiliations

  • J. L. Denny
    • 1
  • C. K. Abbey
    • 2
  1. 1.Department of Radiology, Department of MathematicsUniversity of ArizonaTucson
  2. 2.Department of Radiology, Committee on Applied MathematicsUniversity of ArizonaTucson

Personalised recommendations