Skip to main content
Log in

Mechanism of formic acid decomposition on P−Mo heteropolyacid

  • Published:
Reaction Kinetics and Catalysis Letters Aims and scope Submit manuscript

Abstract

Hydrated (undecomposed) form of heteropolyacid H3PMo12O40/SiO2 exhibits a higher activity in the formic acid decomposition than the corresponding dehydrated sample. The formic acid decomposition takes place on strong Brönsted acid sites of the heteropolyacid.Ab initio SCF MO LCAO method was used for the calculation of the electronic state of two surface complexes of HCOOH molecule (S1 and S2) coordinated to a proton H+. The S1 complex is formed by proton addition to the carbonyl oxygen, whereas the S2 complex is formed proton addition to the oxygen atom of the C−O−H fragment of HCOOH. The selective weakening of the C−O bond and localization of the positive charge on the (O=C−H) fragment in the protonated complex S2 are favorable for the decomposition of formic acid to CO and H2O.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O.V. Krylov:Catalysis by Non-Metals, p. 134. Academic Press, New York 1970.

    Google Scholar 

  2. L.M. Trillo, G. Munuera, J.M. Criado:Catal. Rev.,7, 51 (1972).

    CAS  Google Scholar 

  3. G. Bond:Catalysis by Metals, p. 412. Academic Press, New York/London 1970.

    Google Scholar 

  4. P. Mars, J.J.F. Scholten, P. Zwietering:Adv. Catal.,14, 35 (1963).

    Article  CAS  Google Scholar 

  5. J.J.F. Scholten, P. Mars, P.G. Menon, R. Hardereld:Proc. 3rd International Congress on Catalysis, Amsterdam 1964.Vol. 2, p. 881. Wiley, New York 1965.

    Google Scholar 

  6. G. Busca, V. Lorenzelly:J. Catal.,66, 155 (1980).

    Article  CAS  Google Scholar 

  7. K. Tamaru, T. Onishi:Appl. Spectrosc. Rev.,9, 133 (1973).

    Google Scholar 

  8. Chen, D. V. Goodman:J. Am. Chem. Soc.,117, 12354 (1995).

    Article  Google Scholar 

  9. J. Saussey, J.C.J. Lavalley:Chem. Phys.,75, 505 (1978).

    CAS  Google Scholar 

  10. K. Tamaru:Adv. Catalysis,15, 64 (1964).

    Google Scholar 

  11. K. Fukuda, Yu. Noto, T. Onishi, K. Tamaru:J. Chem. Soc. Faraday Trans.,63, 3072 (1967).

    Article  CAS  Google Scholar 

  12. Yu. Noto, K. Fukuda, Yu. Noto, T. Onishi, K. Tamaru:J. Chem. Soc., Faraday Trans.,63, 2300 (1967).

    Article  CAS  Google Scholar 

  13. M. Otaka, T. Onoda:J. Catal.,38, 494 (1975).

    Article  Google Scholar 

  14. J.M. Criado, F. Conzales, J.M. Trillo:Rev. Chim. Miner.,7, 1041 (1970).

    CAS  Google Scholar 

  15. J.M. Criado, F. Conzales, J.M. Trillo:J. Catal.,23, 11 (1971).

    Article  CAS  Google Scholar 

  16. G.Ya. Popova, T.V. Andrushkevich:Kinet. Katal.,38, 281 (1997).

    Google Scholar 

  17. V.M. Bondareva, T.V. Andrushkevich, R.I. Maksimovskay:Kinet. Catal.,35, 129 (1994).

    CAS  Google Scholar 

  18. J.S. Biukley, J.A. Pople:Intern. J. Quant. Chem.,9 222 (1977).

    Google Scholar 

  19. M. Misono, K. Sakata, Y. Yoneda, W.Y. Lece:Proc. 7th International Congress on Catalysis, B27 (1980).

  20. K. Bruckman, J.M. Tatibouet, M. Che, E. Serwicka, J. Haber:J. Catal.,139, 455 (1993).

    Article  CAS  Google Scholar 

  21. G.Ya. Popova, A.A. Budneva, T.V. Andrushkevich:React. Kinet. Catal. Lett.,62, 97 (1997).

    CAS  Google Scholar 

  22. C.D. Chang:Catal. Rev.-Sci. Eng.,25, 1 (1983).

    CAS  Google Scholar 

  23. P. Salvador, W. Kladning:J. Chem. Soc., Faraday Trans. 1,73, 1153 (1977).

    Article  CAS  Google Scholar 

  24. Y. Ono, T. Mori:J. Chem. Soc., Faraday Trans. 1,77, 2209 (1981).

    Article  CAS  Google Scholar 

  25. J.G. Highfield, J.B. Moffat:J. Catal.,88, 177 (1984);95, 108 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popova, G.Y., Zakharov, I.I. & Andrushkevich, T.V. Mechanism of formic acid decomposition on P−Mo heteropolyacid. React Kinet Catal Lett 66, 251–256 (1999). https://doi.org/10.1007/BF02475798

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02475798

Keywords

Navigation