Reaction Kinetics and Catalysis Letters

, Volume 68, Issue 1, pp 153–163 | Cite as

Features of deposit formation from 1,3-butadiene over Pd catalysts

  • A. Sárkány


Formation of carbonaceous deposits from 1,3-butadiene has been investigated over a group of Pd catalysts. Hydrogen generated in decomposition of diene at 473–523 K participates in diene hydrogenation, resulting in the formation ofn-butenes. XRD measurements have confirmed formation of dissolved carbon (PdCx) phase. DRIFT measurements over 0.06 wt.%Pd/γ-Al2O3 have revealed bands at 1575 and 1464 cm−1, suggesting formation of carboxylate structures. Selectivity of the competitive hydrogenation in 1,3-butadiene and propene mixture R(BD)/R(Pr) has been measured on “fresh” and poisoned samples. Accumulation of deposits has decreased the R(BD)/R(Pr) ratio. The results have been interpreted by transport hindrance and a greater prevalence of non-selective low coordination sites on the poisoned surface. Measurements over Pd, Cu, Pt and Rh catalysts have shown that the highn-butane selectivity over Pt and Rh is also accompanied with low R(BD)/R(Pr) values, suggesting that thermodynamic and mechanistic factors are not entirely separable.


Carbonaceous deposit dissolved carbon transport hindrance competitive hydrogenation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. C. Bond, J. S. Rank:Proc. 3rd Int. Congr. Catal. Amsterdam, Vol. 2, 1225 (1965).Google Scholar
  2. 2.
    G. Webb:Comprehensive Chemical Kinetics, Vol. 20, p. 1. Ed. C.H. Bamford and C.E.H. Tipper, Elsevier 1978.Google Scholar
  3. 3.
    M.L. Derrien:Stud. Surf. Sci. Catal.,27, 613 (1986).CrossRefGoogle Scholar
  4. 4.
    A. Sárkány:Appl. Catal. A,165, 87 (1997).CrossRefGoogle Scholar
  5. 5.
    A. Sárkány:Stud. Surf. Sci. Catal.,101, 111 (1997).CrossRefGoogle Scholar
  6. 6.
    A.S. Al-Ammar, G. Webb:J. Chem. Soc. Faraday Trans. I,74, 657 (1978).CrossRefGoogle Scholar
  7. 7.
    S.D. Jackson, N.J. Casey:J. Chem. Soc. Faraday Trans. I,91, 3269 (1995).CrossRefGoogle Scholar
  8. 8.
    S.J. Thomson, G. Webb.J. Chem. Soc. Chem. Commun., 139 (1976).Google Scholar
  9. 9.
    A. Sárkány:J. Catal.,180, 149 (1998).CrossRefGoogle Scholar
  10. 10.
    S.B. Ziemecki, G.A. Jones,J. Catal.,95, 621 (1985).CrossRefGoogle Scholar
  11. 11.
    M. Maciejewski, A. Baiker:J. Phys. Chem.,98, 285 (1994).CrossRefGoogle Scholar
  12. 12.
    H.C. Brown, J. Chandrasekharan, K.K. Wang:Pure Appl. Chem.,55, 1387 (1983).Google Scholar
  13. 13.
    D. Eisenbach, E. Gallei:J. Catal.,56, 377 (1979).CrossRefGoogle Scholar
  14. 14.
    A. Sárkány, H. Lieske, T. Szilágyi, L. Tóth:Proc. 8th Int Congr. Catal. Berlin, Vol. 2, p. 613 (1984).Google Scholar
  15. 15.
    A. Corado, A. Kiss, H. Knözinger, H.-D. Müller:J. Catal.,37, 68 (1975).CrossRefGoogle Scholar
  16. 16.
    J. Najbar, R.P. Eischens:Proc. 19th Int. Congr. Catal. Calgary, Vol. 3, p. 1434 (1988).Google Scholar
  17. 17.
    W. Herti, A.M. Cuenca:J. Phys. Chem.,77, 1120 (1973).CrossRefGoogle Scholar
  18. 18.
    S. Hub, L. Hilaire, R. Touroude:Appl. Catal.,36, 307 (1988).CrossRefGoogle Scholar
  19. 19.
    J.P. Boitiaux, J. Cosyns, E. Robert:Appl. Catal.,49, 235 (1989).CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 1999

Authors and Affiliations

  • A. Sárkány
    • 1
  1. 1.Institute of Isotope and Surface Chemistry, Chemical Research CenterHungarian Academy of SciencesBudapestHungary

Personalised recommendations