Reaction Kinetics and Catalysis Letters

, Volume 68, Issue 1, pp 25–33 | Cite as

Ring opening of methylcyclopentane over Al2O3 and SiO2 supported Rh catalysts

  • D. Teschner
  • Z. Paál


Hydrogenolytic ring opening of methylcyclopentane (MCP) was investigated on Rh/Al2O3 and Rh/SiO2 catalysts, prepared by the incipient wetness method. Strong dependence can be seen in the yield and distribution of ring opening products as a function of temperature and hydrogen pressure. They depended also on the support used. The ring opening reaction required high hydrogen coverage, and was not random (hindered in the vicinity of the methyl group), thus, mainly 2-methylpentane (2MP) and 3-methylpentane (3MP) were formed. The fragments consisted of C1–C5 alkanes, with methane andi-pentane as main fragments. This means the possibility of breaking two C−C bonds during one sojourn of the reactant on the catalyst, both taking place far from the substituent. The loose positive correlation between the ratios ofi-pentane/n-pentane and 3MP/n-hexane seems to support this conclusion.


Rh/Al2O3 Rh/SiO2 methylcyclopentane ring opening and fragmentation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Tétényi:Acta Chim. Acad. Sci. Hung.,107, 237 (1981).Google Scholar
  2. 2.
    Z. Paál, P. Tétényi:Nature, Vol.267, 234 (1977).CrossRefGoogle Scholar
  3. 3.
    Z. Paál, P. Tétényi: in G.C. Bond, G. Webb (Eds.),Catalysis Specialists Periodical Reports, Vol. 5, p. 80. The Chemical Society, London, 1982.Google Scholar
  4. 4.
    G. Maire, G. Plouidy, J.C. Prudhomme, F.G. Gault:J. Catal.,4, 556 (1965).CrossRefGoogle Scholar
  5. 5.
    Y. Barron, G. Maire, J.M. Muller, F.G. Gault:J. Catal.,5, 428 (1966).CrossRefGoogle Scholar
  6. 6.
    A.L. Liberman:Kinet. Katal. 5, 128 (1964).Google Scholar
  7. 7.
    R. Kramer, H. Zuegg:J. Catal.,80, 446 (1983).CrossRefGoogle Scholar
  8. 8.
    R. Kramer, H. Zuegg:Proc. 8 th Internat. Congr. Catal. Berlin, 1984, Vol. 5, p. 275. Verlag Chemie, Weinheim, 1984.Google Scholar
  9. 9.
    H. Zuegg, R. Kramer:Appl. Catal.,9, 263 (1984).CrossRefGoogle Scholar
  10. 10.
    G. Del Angel, B. Coq, R. Dutartre, F. Figueras:J. Catal.,87, 27 (1984).CrossRefGoogle Scholar
  11. 11.
    G. Delahay, D. Duprez:J. Catal.,115, 542 (1989).CrossRefGoogle Scholar
  12. 12.
    F. Sadi, D. Duprez, F. Gérard, S. Rossignol, A. Miloudi:Catal. Lett.,44, 221 (1997).CrossRefGoogle Scholar
  13. 13.
    C. Wong, R.W. McCabe:J. Catal.,107, 535 (1987).CrossRefGoogle Scholar
  14. 14.
    G. Rupprechter, K. Hayek, H. Hofmeister:J. Catal.,173, 409 (1998).CrossRefGoogle Scholar
  15. 15.
    Z. Paál: in Z. Paál, P.G. Menon (Eds.),Hydrogen Effect in Catalysis, p. 449. Dekker, New York, 1988.Google Scholar
  16. 16.
    G.C. Bond, J.C. Slaa:J. Mol. Catal.,98, 81 (1995).CrossRefGoogle Scholar
  17. 17.
    W.C. Conner: in Z. Paál, P.G. Menon (Eds.),Hydrogen Effect in Catalysis, p. 311. Dekker, New York, 1988.Google Scholar
  18. 18.
    F.J. Schepers, J.G. van Senden, E.H. van Broekhoven, V. Ponec:J. Catal.,94, 400 (1985).CrossRefGoogle Scholar
  19. 19.
    H. Zimmer, Z. Paál:J. Mol. Catal.,51, 261 (1989).CrossRefGoogle Scholar
  20. 20.
    M. Vaarkamp, P. Dijkstra, J. van Grondelle, J.T. Miller, F.S. Modica, D.C. Koningsberger, R.A. van Santen:J. Catal.,151, 330 (1995).CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 1999

Authors and Affiliations

  • D. Teschner
    • 1
  • Z. Paál
    • 1
  1. 1.Institute of Isotope and Surface Chemistry, Chemical Research CenterHungarian Academy of SciencesBudapestHungary

Personalised recommendations