Metal Science and Heat Treatment

, Volume 41, Issue 8, pp 354–360 | Cite as

Inelasticity in isothermal martensite transformation

  • S. A. Golovin
  • I. S. Golovin
  • J. -O. Nilsson
  • G. V. Serzhantova
Inelasticity in Martensite Transformation


  1. 1.

    We have developed a method for plotting C-curves of isothermal martensite transformation by analyzing the temperature and amplitude dependences of IF with thermostatic control in the range of temperatures of martensite transformation. We have obtained data on the inelasticity and microplasticity of the studied alloys in the course of isothermal martensite transformation and have determined the inelastic effects (internal-friction peaks) in warming the alloys up after the martensite transformation.

  2. 2.

    We have determined the activation energy of isothermal martensite transformation in an Fe−Cr−Ni−Mo steel within the framework of the theory of absolute reaction rates, namely,H≅20 kJ/mole. In alloys of the system Fe−Ni−Mo with a double kinetics of martensite transformation the activation energy changes fromH≅6–8 kJ/mole at the nose of the C-curve toH≅2–3 kJ/mole at a temperature approaching the point of adiathermal martensite transformation.

  3. 3.

    We have established the effect of the content of interstitial atoms on the kinetics of the change in the properties of the alloys in subsequent cooling in the temperature range of martensite transformation and the role of trapping of dislocations by interstitial atoms. The formation of saturated impurity atmospheres on dislocations diminishes the role of the dislocations as sites of martensite nucleation due to compensation of the energy of elastic distortions around the dislocations and growth of the energy of formation of martensite nuclei, diminishes the mobility of the dislocations, increases the relaxation stability of austenite, and hampers the development of the isothermal kinetics of initiation and progress of MT.



Austenite Martensite Interstitial Atom Amplitude Dependence Interstitial Solid Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. C. Clapp, “How would we recognize a martensitic transformation if it bumped into us on a dark and nasty night?”J. Physique,5(8), 11–19 (1995).Google Scholar
  2. 2.
    V. N. Belko, B. M. Darinskii, V. S. Postnikov, et al., “Internal friction in diffusionless phase transformations in alloys of Co−Ni,”Fiz. Met. Metalloved.,27, Issue 1, 141–147 (1969).Google Scholar
  3. 3.
    J. P. Delorm and P. F. Gobin, “Frottement internieur et microdeformation associes a la transformation martensitique des solides metalliques,”Materiaux, No. 573, 185–188 (1973), No. 574, 209–213 (1973).Google Scholar
  4. 4.
    W. Dejonghe, R. De Batist, and L. Delaey, “Factors affecting the internal friction peak due to thermoelastic martensite transformation,”Scripta Metall., No. 10, 1125–1128 (1976).CrossRefGoogle Scholar
  5. 5.
    G. Gremaus, J.-P. Bidaux, and W. Benoit, “Etude a basse frequence des pics de frottement internieur associes a une transition de phase du premier orde,”Helv. Physica Acta, No. 60, 947–958 (1987).Google Scholar
  6. 6.
    S. A. Golovin and I. S. Golovin, “Inelastic effects and martensite transformations in alloys of Fe−Ni−Mo,”Fiz. Met. Metalloved.,82, Issue 2, 71–82 (1996).Google Scholar
  7. 7.
    S. A. Golovin and A. A. Il'in (eds.),Mechanical Spectroscopy of Metallic Materials [in Russian], Izd. Mezhd. Inzh. Akad., Moscow (1994).Google Scholar
  8. 8.
    P. Gadaud, B. Guosolan, A. Kulik, et al., “Apparatus for hightemperature internal friction differential measurements,”Rev. Sci. Instrum.,61(10), 2671–2675 (1990).CrossRefGoogle Scholar
  9. 9.
    V. N. Zambrzhistkii, O. P. Maksimova, P. L. Gruzin, et al., “Effect of annealing on the structure of austenite and martensitic transformation in an alloy of Fe−Ni−Mo with isothermal kinetics of the transformation,”Fiz. Met. Metalloved.,49, Issue 3, 776–787 (1980).Google Scholar
  10. 10.
    M. S. Blanter and Yu. V. Piguzov (eds.),The Method of Internal Friction in Metallophysical Study [in Russian], Metallurgiya, Moscow (1991).Google Scholar
  11. 11.
    J.-O. Nilsson, A. Hultin Stigenberg, and P. Liu, “Isothermal formation of quasi-crystalline precipitates and their effect on strength in a 12 Cr−9 Ni−4 Mo maraging stainless steel,”Metall. Mater. Trans.,25A, 2225 (1994).Google Scholar
  12. 12.
    G. Klems, R. Miner, F. A. Hultgren, et al., “Internal friction in ferrous martensites,”Met. Trans., No. 6, 839–849 (1976).Google Scholar
  13. 13.
    S. Glasstone, K. L. Laider, and H. Eyring,The Theory of Rate Processes, McGraw-Hill, New York (1941).Google Scholar
  14. 14.
    A. Borgenstam and M. Hillert, “Activation energy for isothermal martensite in ferrous alloys,”Acta Mater.,45(2), 651–662 (1997).CrossRefGoogle Scholar
  15. 15.
    A. Borgenstam,Nucleation and Growth of Martensite in Steels, Doctoral Thesis (ISBN 91-7170-201-6), Stockholm (1997).Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 2000

Authors and Affiliations

  • S. A. Golovin
  • I. S. Golovin
  • J. -O. Nilsson
  • G. V. Serzhantova

There are no affiliations available

Personalised recommendations