Skip to main content
Log in

Deformation behaviour of mild steel beams under alternating loads

  • Published:
Matériaux et Construction Aims and scope Submit manuscript

Abstract

A method has been developed to predict the cyclic behaviour of simple structures subjected to reversed bending under load control conditions. Cyclic moment-curvature relations are developed from pure bending tests under moment control and are applied to predict deflection range and maximum deflection amplitude for a cantilever beam.

Disagreement between analytical and experimental results at low life and high load is attributed to a discontinuous yield phenomenon which manifests itself below a certain threshold load range.

Cyclic creep is believed to occur depending upon the nature of residual stresses initiated during the first half cycle of reversed loading.

Résumé

On décrit une méthode susceptible de prédire le comportement de structures simples soumises à la flexion alternée dans les limites strictes de charges symétriques constantes. A cette fin, deux études expérimentales ont été faites. Une première série d'essais avec moment de flexion contrôlé a porté sur des éprouvettes en acier doux dans les conditions de flexion simple alternée; mais la variation, pour un cycle quelconque, n'était pas symétrique par rapport à l'axe central de la poutre. On a entrepris une seconde série d'essais sur des poutres-consoles en acier doux soumises à des charges alternées; l'intervalle de fléchissement variait d'un cycle à l'autre mais, pour un cycle quelconque, les amplitudes de la flèche étaient inégales.

D'après les résultats de la première série d'essais, on a établi une relation moment-courbure. On a eu recours ensuite au calcul électronique et un programme a été réalisé afin de prédire le comportement de structures simples sous flexion alternée dans les conditions de charge contrôlée. On s'est servi de la méthode pour prédire le comportment d'une poutre-console dans des conditions de charge similaires et on a établi une comparaison avec la seconde série d'essais. La corrélation entre les caractéristiques moment-courbure et le nombre de cycles est satisfaisante entre500 et10 000 cycles.

On croit que les discordances, relatives à l'intervalle de fléchissement ou à l'amplitude maximale de flèche, entre les résultats analytiques et expérimentaux pour un petit nombre de cycles et une charge élevée sont dues à un phénomène de déformation plastique discontinue qui se manifeste au-dessous d'un certain seuil. On suppose qu'il se produit un fluage cyclique dans une direction spécifique qui dépend de la nature des contraintes résiduelles engendrées durant la première moitié d'un cycle de chargement alterné.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

K :

Curvature due to flexure

K y :

Curvature at yield

k :

Non-dimensional curvatureK/K y

M :

Moment amplitude

M y :

Moment at yield

m :

Non-dimensional momentM/M y

N :

Number of cycles

N f :

Number of cycles to failure

Y :

Deflection

Y y :

Deflection at yield

W :

Load

W y :

Load at yield

B :

Width of a beam

D :

Depth of a beam

σy :

Yield stress

E :

Young's modulus

Δε:

Strain range for any cycle

ɛmax :

Maximum strain amplitude for any cycle

ɛy :

Strain at yield

α1, α2, β1, β2 :

Constants in moment-curvature relationships for half deflection range

α1 t 1, α2 t 2 β1 t 1, β2 t 2 :

Constants in moment-curvature relationships for maximum deflection amplitude

L :

Span of a beam

I :

Moment of inertia of the cross-section

References

  1. Davenport A.G.The Nature of Disturbing Forces RILEM Symposium on “Effects of Repeated Loading of Materials and Structures”, 1966, Vol. 1.

  2. Blatherwick A.A., Lazan B.A study with New Equipment of the Effect of Fatigue Stress on the Damping Capacity and Elasticity of Mild Steel, ASM Vol. 42, 1950.

  3. Blatherwick A.A., Lazan B.The Effect of Changing Cyclic Modulus on Bending Fatigue, Proc. ASTM, 1956, p. 102.

  4. Coffin L.F., Tavernelli J.F.Cyclic Straining and Fatigue of Metals, Trans. AIME, Vol. 215, pp. 744, 1959.

    Google Scholar 

  5. Esteva L.Effects of Repeated Loads on Construction Materials, RILEM Symposium on “Effects of Repeated Loading of Materials and Structures”, 1966, Vol. III.

  6. Benham P.P.Fatigue of Metals Caused by a Relatively Few Cycles of High Load or Strain Amplitude, Metallurgical Reviews, Vol. 3, No. 11. 1958, pp. 203–234.

    Google Scholar 

  7. Yao, Munse, W.H.,—Low Cycle Fatigue of Metals-Literature Review, Welding Journal 1962, 41, Res. Sup. P 182-S.

  8. Coffin L.F.Low Cycle Fatigue-A Review, Applied Materials Research, Vol. 1, No. 3, Oct. 1962, pp. 129–141.

    Google Scholar 

  9. Coffin L.F.Experimental Support for Generalized Equation Predicting Low Cycle Fatigue, Journal of Basic Engineering, Trans. ASME, 1961, Paper 61-WA-199.

  10. Manson S.S.Discussion, Basic Engineering, ASME Vol. 84, Dec. 1962, pp. 537–541.

    Google Scholar 

  11. Peterson R.E.Engineering and Design Aspects, Materials Research and Standards, Vol. 3, No. 2, Feb. 1963, pp. 122–139.

    Google Scholar 

  12. Royles R.Low Endurance Fatigue Behaviour of Mild Steel Beams in Reversed Bending. J. Strain Analysis, 1966, 1, (No. 3 April), p. 239.

    Google Scholar 

  13. Sherbourne A.N.Some Preliminary Experiments on the Behaviour of Ductile Structures under Repeated Loads, Experimental Mechanics, Vol. 3, No. 5, May 1963, pp. 119–128.

    Article  Google Scholar 

  14. Krishnasamy S.Beams under Cyclic Alternating Deflections, Ph. D. Thesis, University of Waterloo, 1966.

  15. Sherbourne A.N., Krishnasamy S.Mild Steel Beams under Cyclic Alternating Deflections, Vol. 30/I of “Publications”, Int. Association for Bridge and Structural Eng., 1970.

  16. Krishnasamy S., Sherbourne A.N.Mild Steel Structures under Reversed Bending, RILEM Symposium on “Effects of Repeated Loading of Materials and Structures”, Mexico City, 1966.

  17. Sherbourne A.N., Krishnasamy S.Moment-Curvature Models under Reversed Cyclic Straining, Experimental Mechanics, Vol. 9, No. 1, 1969, pp. 36–40.

    Article  Google Scholar 

  18. Feltner C.E., Sinclair G.M.Cyclic Stress Induced Creep of Close-Packed Metals, Joint International Con. on Creep, 1963, pp. 3–9.

  19. O'Connar H.C., Morrison J.L.M— Proceedings of the International Conference on Fatigue of Metals, London, 1956, p. 102.

  20. Benham P.P.Axial-Load and Strain-Cycling Fatigue of Copper at Low Endurance, Inst. Metals, 1961, pp. 328–338.

  21. Coffin L.F.The Influence of Mean Stress on the Mechanical Hysteresis Loop Shift of Aluminum 1100, Trans. ASME Series D, 1964, 86.673.

  22. Sherbourne A.N., Topper T.H., Krishnasamy S., Robb A.The Design of a Testing System for Low Cycle Fatigue, RILEM Symposium, 1968, Stuttgart.

  23. Topper T.H.Cyclic Plastic Loading of Mild Steel, Ph.D. Thesis, Cambridge University, England, 1962.

    Google Scholar 

  24. Khurana K.K.Deflection of Beams under Symmetric Alternating Bending Moment, M.A.Sc. Thesis, University of Waterloo, Ontario, Canada.

  25. Tilly G.P.Cumulative Strain Behaviour of a Nickel Chromium Alloy and an 11%Chromium Martensitic Type of Steel, (IME), Applied Mechanics Convention, Vol. 181, Part 31, 1966.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krishnasamy, S., Sherbourne, A.N. & Khurana, K.K. Deformation behaviour of mild steel beams under alternating loads. Mat. Constr. 6, 3–13 (1973). https://doi.org/10.1007/BF02474837

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02474837

Keywords

Navigation