Medical and biological engineering

, Volume 4, Issue 6, pp 555–566 | Cite as

Analysis of expiratory airways collapse

  • R. McWilliam
  • J. M. Nightingale
  • A. B. Kinnier Wilson


A dynamic model of mechanical lung function has been made which displays the time variation of flow and pressure during a breathing cycle. It has shown how expiratory flow restriction can take place due to elastic instability of the “bronchial” walls. The model exhibits these characteristics over a wide range of operating conditions, and can describe both normal and diseased lungs. It is simple enough to form one element in an analogue computer simulation considered from a wider standpoint.


Lung Volume Airway Resistance Lower Airway Intrathoracic Pressure Transverse Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



intrathoracic pressure referred to an arbitrary fixed level (cm H2O)


elastic pressure component referred to an arbitrary fixed level (cm H2O)


alveolar pressure (cm H2O)


pressure at collapsing region (cm H2O)


upper airway pressure drop (cm H2O)


transmural pressure drop (cm H2O)


transmural collapse pressure (cm H2O)

\(\dot V\)

flow rate (l/sec)


volume referred to an arbitrary level (l)


flow resistance of lower airway (cm H2O/I/sec)


flow resistance of upper airway (cm H2O/l/sec)


mean diameter of airway throat λx=conductance (l/sec/cm H2O)


conductance of throat per unit ofx λx=conductance (l/sec/cm H2O)


elastance of lungs (cm H2O/l)


Un modèle dynamique du fonctionnement mécanique du poumon a été réalisé qui met en évidence les variations du débit et de la pression au cours d'un cycle respiratoire complet. Il a été démontré comment une réduction excessive peut se manifester durant la phase respiratoire, dûe à l'instabilité élastique des parois des bronches. Le modèle montre ce fait caractéristique en opérant sur une gamme étendue et peut discriminer les poumons malades on en état normal. Le modéle est suffisamment simple pour être considéré comme un seul élément lors d'une simulation par calculateur analogique se déroulant dans un cadre plus général.


Ein dynamisches Modell der mechanischen Lungenfunktion wurde hergestellt, das die zeitliche Änderung des Durchflusses und des Druckes während eines Atemzyklus darstellt. Es zeigte sich eine Behinderung des Ausatmungsflusses auf Grund einer elastischen Instabilität der “Bronchialwand”. Das Modell zeigt diese Charakteristika über einen weiten Bereich von Arbeitsbedingungen und kann die normale und die kranke Lunge beschrieben. Das Model ist einfach genug, ein Element in einer Analogrechner-Simulation ineinem größeren Zusammenhang zu bilden.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Attinger, E. O., Goldstein, M. M. andSegal, M. S. (1956) Ventilation in chronic pulmonary emphysema, I. Pressure-volume and pressure-flow relationships.Am. Rev. Tuberc. pulm. Dis.,74, 210–219.Google Scholar
  2. Blide, R. W., Kerr, H. D. andSpicer, W. S. (1964) Measurement of upper and lower airway resistance and conductance in man.J. appl. Physiol.,19, 1059–1069.Google Scholar
  3. Briscoe, W. A. andDubois, A. B. (1958) The relationship between airway resistance, airway conductance and lung volume in subjects of different age and body size.J. clin. Invest.,37, 1279–1285.Google Scholar
  4. Butler, J., Caro, C. G., Alcala, R. andDubois, A. B. (1960) Physiological factors affecting airway resistance in normal subjects and in patients with obstructive respiratory disease.J. clin. Invest.,39, 584–591.Google Scholar
  5. Campbell, E. J. M., Martin, H. B. andRiley, R. L. (1957) Mechanisms of airway obstruction.Bull. Johns Hopkins Hosp.,101, 329–343.Google Scholar
  6. Cheng, T. O., Godfrey, M. P. andShepard, R. H. (1959) Pulmonary resistance and state of inflation of lungs in normal subjects and in patients with airway obstruction.J. appl. Physiol.,14, 727–732.Google Scholar
  7. Crofton, J., Douglas, A., Simpson, D. andMerchant, S. (1963) The measurement of bronchial endomural or “squeeze” pressures.Thorax,18, 68–76.Google Scholar
  8. Dayman, H. (1951) Mechanics of airflow in health and in emphysema.J. clin. Invest.,30, 1175–1190.Google Scholar
  9. Dekker, E., Defares, J. G., andHeemstra, H. (1958) Direct measurement of intrabronchial pressure. Its application to the location of the check valve mechanism.J. appl. Physiol.,13, 35–41.Google Scholar
  10. Ellis, M. (1936) Mechanism of changes in bronchial calibre during respiration.J. Physiol., Lond.,87, 298–309.Google Scholar
  11. Ferris, B. G., Mead, J. andOpie, L. H. (1964) Partitioning of respiratory flow resistance in man.J. appl. Physiol.,19, 653–658.Google Scholar
  12. Fry, D. L. (1958) Theoretical considerations of the bronchial pressure-flow-volume relationships with particular reference to the maximum expiratory flow volume curve.Physics. Med. Biol.,3, 174–194.CrossRefGoogle Scholar
  13. Fry, D. L., Ebert, R. V., Stead, W. W. andBrown, C. C. (1954) The mechanics of pulmonary ventilation in normal subjects and in patients with emphysema.Am. J. Med.,16, 80–97.CrossRefGoogle Scholar
  14. Fry, D. L. andHyatt, R. E. (1960) Pulmonary mechanics. A unified analysis of the relationship between pressure, volume and gasflow in the lungs of normal and diseased human subjects.Am. J. Med.,29, 672–689.CrossRefGoogle Scholar
  15. Fry, D. L., Stead, W. W., Ebert, R. V., Lubin, R. I. andWells, H. S. (1952) The measurement of oesophageal pressure and its relation to intrathoracic pressure.J. Lab. clin. Med.,40, 664–673.Google Scholar
  16. Gandevia, B. (1963) The spirogram of gross expiratory tracheobronchial collapse in emphysema.Quart. J. Med.,32, 23–31.Google Scholar
  17. Herzog, H. (1963) Expiratory stenosis of the trachea and the main bronchi in cases of obstructive pulmonary emphysema.Triangle,6, 85–97.Google Scholar
  18. Hyatt, R. E., Schilder, D. P. andFry, D. L. (1958) Relationship between maximum expiratory flow and degree of lung inflation.J. appl. Physiol.,13, 331–336.Google Scholar
  19. Hyatt, R. E. andWilcox, R. E. (1961) Extrathoracic airway resistance in man.J. appl. Physiol.,16, 326–330.Google Scholar
  20. Macklem, P. T., Fraser, R. G. andBates, D. V. (1963) Bronchial pressures and dimensions in health and obstructive airway disease.J. appl. Physiol.,18, 699–706.Google Scholar
  21. Macklem, P. T., Fraser, R. G. andBrown, W. G. (1965) Bronchial pressure measurements in emphysema and bronchitis.J. clin. Invest.,44, 897–905.CrossRefGoogle Scholar
  22. Marshall, R. andDubois, A. B. (1956) The measurement of the viscous resistance of the lung tissues in normal man.Clin. Sci.,15, 161–170.Google Scholar
  23. Marshall, R. andHolden, W. S. (1963) Changes in calibre of the smaller airways in man.Thorax,18, 54–58.CrossRefGoogle Scholar
  24. Martin, H. B. andProctor, D. F. (1958) Pressure-volume measurements on dog bronchi.J. appl. Physiol.,13, 337–343.Google Scholar
  25. McWilliam, R. andAdams, A. H. (1963) Analogue computer for study of breathing mechanics.Med. biol. Engng,1, 353–361.Google Scholar
  26. Mead, J. (1956) Measurement of inertia of the lungs at increased ambient pressure.J. appl. Physiol.,9, 208–212.Google Scholar
  27. Mead, J., Lindgren, I. andGaensler, E. A. (1955) The mechanical properties of the lungs in emphysema.J. clin. Invest.,34, 1005–1016.Google Scholar
  28. Mead, J. andWhittenberger, J. L. (1953) Physical properties of human lungs measured during spontaneous respiration.J. appl. Physiol.,5, 779–796.Google Scholar
  29. Schmidt, R. W., Wasserman, K. andLillington, G. A. (1964) The effect of airflow and oral pressure on the mechanics of breathing in patients with asthma and emphysema.Am. Rev. Resp. Dis.,90, 564–571.Google Scholar
  30. Timoshenko, S. (1936) InTheory of Elastic Stability. McGraw-Hill, New York.Google Scholar

Copyright information

© International Federation for Medical and Biological Engineering 1966

Authors and Affiliations

  • R. McWilliam
    • 1
    • 2
  • J. M. Nightingale
    • 1
    • 2
  • A. B. Kinnier Wilson
    • 1
    • 2
  1. 1.Medical Research Council, Centre for Muscle SubstitutesWest Hendon HospitalLondon
  2. 2.Department of EngineeringUniversity of LeicesterLeicester

Personalised recommendations