Skip to main content
Log in

The measurement and interpretation of electric potentials from a physico-chemical point of view

  • Published:
Medical electronics and biological engineering Aims and scope Submit manuscript

Abstract

This paper gives a brief account of some fundamental thermodynamic and electrostatic aspects of electrodes in solutions, with special reference to electrode potentials. Different types of potential should be distinguished; their operational definiteness is discussed. Formulas are given for charge, potential and capacity of a diffuse electrical double layer at a phase boundary. The applicability limits as well as possible modifications of the diffuse theory are discussed. It appears that the measurable total double layer capacity under given conditions can be represented by a diffuse and a non-diffuse capacity in series, where the salt content of the solution determines which of these predominates. Although the theory is presented in terms of electrode properties, it is much more generally applicable, e.g. in the field of the stability of colloids, or membrane performance. A short discussion on liquid junction potentials, glass electrode potentials and electrokinetic potentials is also included.

Sommaire

Un bref compte rendu donne un aperçu sur quelques propriétés fondamentales thermodynamiques et électrostatiques d'électrodes immergées dans une solution, avec référence particulière aux potentiels des électrodes. Une distinction est faite entre différents types de potentiels et la définition de leurs différents modes opérationnels est discutée. Des formules sont données exprimant la charge, le potentiel et la capacité d'une double zône électrique diffuse à la limite des milieux. Les possibilités des différentes applications de cette théorie ainsi que ses modifications possibles sont envisagées. Il apparaît que la capacité totale mesurable de la double zône électrique peut, sous certaines conditions, être exprimée par une capacité en série, diffuse ou localisée, selon le degré de concentration saline de la solution. Quoique cette théorie soit exposée en termes de propriétés d'électrodes, elle peut s'appliquer dans un sens beaucoup plus large, par exemple à l'étude de la stabilité des colloïdes ou à celle de la qualité des membranes. Les potentiels à l'interface des liquides, des électrodes en verre et de l'électrocinétique sont brièvement commentés.

Zusammenfassung

Dieser Artikel gibt einen kurzen Bericht über einige grundlegende thermodynamische und elektrostatische Aspekte von Elektroden in Lösungen unter besonderer Berücksichtigung der Elektrodenpotentiale. Verschiedene Potentialarten sollten unterschieden werden; Möglichkeiten ihrer praktischen Bestimmung werden besprochen. Es werden Formeln angegeben für Ladung, Potential und Kapazität einer diffusen elektrischen Doppelschicht an einer Phasengrenze. Die Grenzen der Anwendbarkeit und ebenso mögliche Einschränkungen dieser Theorie werden besprochen. Es zeigt sich, daß unter gewissen Bedingungen die meßbare Gesamtkapazität der Doppelschicht als eine Reihenschaltung aus einer diffusen und nicht-diffusen Kapazität aufgefaßt werden kann, wobei der Salzgehalt der Lösung den jeweilig überwiegenden Anteil bestimmt. Obwohl die Theorie in der Form von Elektrodeneigenschaften gegeben ist, ist sie doch allgemeiner anwendbar, z.B. auf dem Gebiet der Stabilität von Kolloiden oder der Membranvorgänge. Potentiale an Flüssigkeitsgrenzen, bei Glaselektroden und elektrokinetische Potentiale werden kurz diskutiert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

radius of spherical particle or spherical electrode

a i :

activity

c :

concentration

C :

differential capacity =dσ/dψ

D :

part of the electrode potential attributable to free charges

e :

elementary charge

E :

potential:E s-applied potential (polarizable electrode),E o-standard potential,E diff-liquid junction or diffusion potential,E m-membrane potential

F :

Faraday

i :

subscript denotes given ion

k:

Boltzmann-constant

K :

integral capacity=σ/ψ

n :

number of dipoles per cm2

n i :

number of ionsi per cm3

Q :

charge

r :

distance from (curved) interface

R :

gas constant

t :

transport number

T :

absolute temperature

w i :

work required to bring ioni from infinity to the place wherew i is measured

x :

distance from (flat) interface

z i :

valency, sign included

α:

real potential=z μi+zi

α:

(superscript), denotes a given phase

β:

(superscript), denotes a given phase

γ:

interfacial tension

δ:

thickness of molecular condensor

δ:

(subscript), denotes value of named magnitude forx

ε:

dielectric constant

ζ:

electrokinetic potential

η:

viscosity

ηi :

total or electrochemical potential

ξ:

\(\kappa \left( {\frac{{4\pi e^2 \sum\limits_i {n_i } \left( \infty \right)z_i ^2 }}{{\varepsilon kT}}} \right)^{\frac{1}{2}} \)

μ:

dipole moment

μi :

thermodynamic potential

ρ:

space charge density

σ:

surface charge

ϕ:

Galvani- or inner potential

Φ:

specific adsorption potential=non Coulombic contribution tow i

χ:

surface potential jump

ψ:

Volta. or outer potential. Variable potential in the double layer

Δ:

difference

αΔβ :

value of named magnitude in phase β minus value in phase α

2 :

Nabla square or Laplace-operator

References

  • Alcock, E. D. (1936) The influence of an electric field on the viscosity of liquids.Physics,7, 126–129.

    Article  Google Scholar 

  • Andrade, E. N. da C. andDodd, C. (1951) The effect of an electric field on the viscosity of fluids.Proc. roy. Soc.,A 204, 449–464. (This paper was amended byHart, J. (1958)J. chem. Phys.,29, 960–961.

    Google Scholar 

  • Bikerman, J. J. (1942) Structure and capacity of the electrical double layer.Phil. Mag.,33, 384–397.

    MATH  Google Scholar 

  • Björnstahl, Y. andSnellman, K. O. (1937) Die Einwirkung eines Elektrischen Feldes auf die Viskosität bei reinen Flüssigkeiten und kolloiden Lösungen.Kolloid-Zschr.,78, 258–272.

    Article  Google Scholar 

  • Blomgren, E. andBockris, J. O'M. (1959) The adsorption of aromatic amines at the interface mercury/aqueous acid solution.J. phys. Chem.,63, 1475–1484.

    Article  Google Scholar 

  • Bockris, J. O'M., Mehl, W., Conway, B. E. andYoung, L. (1956) Frequency variation of the capacity and resistance of the electrical double layer at a metal-solution interphase.J. chem. Phys.,25, 776–777 (Letters to the Editor).

    Article  Google Scholar 

  • Boguslavskii, L. I. andDamaskin, V. V. (1960) Determination of the zero point of charge on T1-amalgam by the method of the differential capacity measurement.Zh. Fiz. Khim.,34, 2099–2109.

    Google Scholar 

  • Bolt, G. H. (1952) Analysis of the Gouy-Chapman theory of the electrical double layer.J. Colloid Sci.,10, 206–218.

    Article  Google Scholar 

  • Booth, F. (1951) The dielectric constant of water and the saturation effect.J. chem. Phys.,19, 391. (See also pp. 1327 and 1615).

    Article  MathSciNet  Google Scholar 

  • Borisova, T. J. andProskurnin, M. A. (1947) Determination of the capacity of the mercury electrode in Cl′, Br′ and J′ solutions with the commutator method.Zh. Fiz. Khim.,21, 463;Chem. Abstr.,41, (1947-II), 6823.

    Google Scholar 

  • Bowden, F. D. andGrew, K. E. W. (1947) An experimental determination of the capacity of the double layer.Disc. Faraday Soc.,1, 91–94.

    Google Scholar 

  • Breiter, M. andDelahay, P. (1959) Adsorption of neutral substances from electrocapillary curves and double layer capacities.J. Amer. chem. Soc.,81, 2938–2941.

    Article  Google Scholar 

  • Brodowsky, H. andStrehlow, H. (1959) Zur Struktur der elektrochemischen Doppelschicht.Z. Elektrochem.,63, 262–269.

    Google Scholar 

  • Budd, A. L. (1963) Determination of silver ions in solution with a glass electrode.J. Electroanal. Chem.,5, 35–39.

    Article  Google Scholar 

  • Calker, J. v. andAubke, B. (1952) The influence of electric fields on the internal friction of liquids.Z. Phys.,131, 443–455.

    Article  Google Scholar 

  • Chapman, D. L. (1913) A contribution to the theory of electrocapillarity.Phil. Mag., (6),25, 475–481.

    MATH  MathSciNet  Google Scholar 

  • Chernyuk, A. K. (1944) The influence of a constant electric field on the viscosity of liquids.Akad. Nauk. S.S.S.R., Otdel. tekhn. nauk. Inst. mashinobedeniya. Soveshchanie po vyazkosti zhidkostei i kolloid rastvorov,2, 62–67;Chem. Abstr.,40 (1946), 3.3151–9.

    Google Scholar 

  • Chmutin, M. S. (1953) The viscosity of certain liquid dielectric materials in a constant electric field.Uchenie zapiski Stalingrad. Gosudarst. pedagog. Inst., No. 3, 92–105;Referat. Zh. Fiz. 1955, No. 8987;Chem. Abstr.,50, (1956) 4.572i.

    Google Scholar 

  • Conway B. E., Bockris, J. O'M. andAmmar, I. A. (1951) The dielectric constant of the solution in the diffuse and Helmholtz double layers at a charged interface in aqueous solutions.Trans. Faraday Soc.,47, 756–766.

    Article  Google Scholar 

  • Damaskin, V. V. (1958) A method to measure the capacity in dilute electrolyte solutions.Zh. Fiz. Khim. 32, 2199–2204;Chem. Abstr.,53, (1959), 11.064i.

    Google Scholar 

  • Darmoi, G. andDarmois, E. (1954) Electrocapillary curves.C. R.,238, 971–975;Chem. Abstr.,48, (1954), 7.399i

    Google Scholar 

  • Davies, J. T. andRideal, E. K. (1961)Intefacial Phenomena. Acad. Press, New York, London.

    Google Scholar 

  • Devanathan, M. A. V. (1954) A theory of the electrical double layer and the interpretation of differential capacity curves.Trans. Faraday Soc.,50, 373–385.

    Article  Google Scholar 

  • Dole, M. (1947)The Glass Electrode, Methods, Applications and Theory, 2nd Edition. Wiley, New York, London.

    Google Scholar 

  • Dube, G. P. (1943) Electrical energy of two cylindrical charged particles.Indian J. Phys.,17, 189–192.

    MathSciNet  Google Scholar 

  • Eda, K. andTamamushi, B. (1960) Proc. 3rd Int. Congress Surface Activity, Köln, 1960. Vol. B, pp. 291–295. (Here other references can be found.)

  • Eisenman, G., Rudin, D. O. andCasby, J. O. (1957) Glass electrode for measuring sodium ion.Science,126, 831–834.

    Google Scholar 

  • Frumkin, A. N., Iofa, Z. A. andGerovich, M. A. (1956) The potential difference at the boundary water-gas.Zh. Fiz. Khim.,30, 1455–1468;chem. Abstr.,51, (1957), 4173d.

    Google Scholar 

  • Frumkin, A. N., Damaskin, V. V. andNikolaeva-Fedorovich, N. V. (1958) Superequivalent adsorption of cations on a negatively charged mercury surface.Doklady Akad. Nauk S.S.S.R.,15, 751–754;Chem. Abstr.,52, (1958), 17.885b.

    Google Scholar 

  • Garrels, R. M., Sato, M., Thompson, M. E. andTruesdell, A. H. (1962) Glass electrodes sensitive to divalent cations.Science,135, 1045.

    Google Scholar 

  • Geerlings, M. W. (1956) Dynamic behaviour of pH-glass electrodes and of neutralisation processes. Proc. Conf. Soc. Instr. Techn., Cambridge 1956. Plant and process characteristics, pp. 110–130.

  • Gorin, M. H. (1942)Theory and migration of charged particles. Equations for cylinders. In:Abramson, H. A., Moyer, L. S. andGorin, M. H. Electrophoresis of proteins and the chemistry of cell surfaces. p. 125. Reinhold Publ. Co., New York.

    Google Scholar 

  • Gouy, G. (1910) Sur la constitution de la charge electrique à la surface d'un electrolyte.J. Phys.,9, 457–468.

    Google Scholar 

  • Gouy, G. (1917) Sur la fonction électrocapillaire.Ann. Phys.,7, 129–184.

    Google Scholar 

  • Grahame, D. C. (1941) Properties of the electrical double layer at a mercury interface—I. Methods of measurement and interpretation of results.J. Amer. chem. Soc.,63, 1207–1215.

    Article  Google Scholar 

  • Grahame, D. C. (1946) Properties of the electrical double layer at a mercury interface—II. The effect of frequency on the capacity and resistance of an ideal polarized electrode.J. Amer. chem. Soc.,68, 301–310.

    Article  Google Scholar 

  • Grahame, D. C. (1947) The electrical double layer and the theory of electrocapillarity.Chem. Rev.,41, 441–501.

    Article  Google Scholar 

  • Grahame, D. C. (1949) Measurement of the differential capacity of the electrical double layer at a mercury-electrode.J. Amer. chem. Soc.,71, 2975–2978.

    Article  Google Scholar 

  • Grahame, D. C. (1950) Effects of dielectric saturation upon the diffuse double layer and the free energy of hydration of ions.J. chem. Phys.,18, 903–909.

    Article  Google Scholar 

  • Grahame, D. C. (1951) The role of the cations in the electrical double layer.J. Electrochem. Soc.,98, 343–350.

    Google Scholar 

  • Grahame, D. C. (1953) Diffuse double layer theory for electrolytes of unsymmetrical valence types.J. chem. Phys.,21, 1054–1060.

    Article  Google Scholar 

  • Grahame, D. C. andSoderberg, B. A. (1954) Ionic components of charge in the electrical double layer.J. chem. Phys.,22, 449–460.

    Article  Google Scholar 

  • Grahame, D. C. (1955) The “hump” in the capacity of the electrical double layer.J. Chem. Phys.,23, 1725–1726. (Letter to the Editor).

    Article  Google Scholar 

  • Grahame, D. C. (1957) Capacity of the electrical double layer between mercury and aqueous sodium fluoride solutions. Effect of temperature and concentration.J. Amer. chem. Soc.,79, 2093–2098.

    Article  Google Scholar 

  • Grahame, D. C. (1958) Discreteness-of-charge-effects in the inner region of the electrical double layer.Z. Elektrochem.,62, 264–274.

    Google Scholar 

  • Gupta, S. L. andAgarwal, S. K. O. (1959) Nature of the capacity peaks observed with organic compounds at the dropping mercury electrode in a pulsating field.Kolloid-Zschr.,163, 136–138.

    Article  Google Scholar 

  • Hansen, R. S., Minturn, R. E. andHickson, D. A. (1956) The inference of adsorption from differential double layer capacitance measurements.J. phys. Chem.,60, 1185–1189.

    Article  Google Scholar 

  • Hoskin, N. E. (1953) Solution of the Poisson-Boltzmann equation for the potential distribution in the double layer of a single colloidal spherical particle.Trans. Faraday Soc.,49, 1471–1477.

    Article  Google Scholar 

  • Hush, N. S. (1948) The free energies of hydration of gaseous ions.Aust. J. sci. Res.,A 1, 480–493;Chem. Abstr.,44, (1950), 1321e.

    Google Scholar 

  • Iwasaki, I. andde Bruyn, P. L. (1958) The electrochemical double layer on silver sulfide at pH=4,7.-I. In the absence of specific adsorption.J. phys. Chem.,62, 594–599.

    Article  Google Scholar 

  • Kabanov, B. andYudkevich, R. (1939) The lead electrode—II. Capacity of the double layer and measurement of the real surface.Zh. Fiz. Khim.,13, 813–817;Chem. Abstr.,34, (1940), 7.6885.

    Google Scholar 

  • Kamieński, B. (1959) The nature of the electrical potential at the free surface of aqueous solutions.Elektrochim. Acta.,1, 272. See alsoKamieński, B. (1959)Electrochim. Acta.,3, 208–210. These papers have been criticized byFrumkin (1960)Electrochim. Acta.,2, 351–354 and byHurd et al. (1962)Science,135, 791.

    Article  Google Scholar 

  • Kamura, I. O. (1943) The influence of an electric field on the viscosity of liquids.J. chem. Soc. Jap.,64, 895–900 & 937–940.

    Google Scholar 

  • Klein, O. undLange, E. (1937) Die Normal-Volta-potentiale Δψo der wichtigsten elektrochemischen Zweiphasensysteme, insbesondere der Elektroden Metall/Metallsalzlösung.Z. Elektrochem.,43, 570–584.

    Google Scholar 

  • Koloturkin, Ya. M. andBune, N. Ya. (1955) Hydrogen overvoltage and the capacity of the double layer of a lead electrode.Zh. Fiz. Khim.,29, 435–449;Chem. Abstr.,49, (1955), 10.099b.

    Google Scholar 

  • Laitinen, H. A. andMorinaga, K. (1962) Double layer capacity studies of adsorption at Hg/solution interfaces. Effects of expanding and receding surfaces. Stability of oriented Langmuir-monolayers.J. Colloid. Sci.,17, 628–637.

    Article  Google Scholar 

  • Lange, E. (1933) See:Lange, E. undKoenig, F. O. Handbuch der Experimentalphysik, Vol. 12, Part 2, p. 263. Leipzig, 1933.

    Google Scholar 

  • Levich, V. G. andKrylov, V. S. (1962) Adsorption isotherms for the model of a discrete electric double layer.Doklady Akad. Nauk. S.S.S.R.,142, 123–127.

    Google Scholar 

  • Levine, S. andBell, G. M. (1960) Theory of a modified Poisson-Boltzmann equation—I. The volume effect of hydrated ions.J. phys. Chem.,64, 1188–1195.

    MathSciNet  Google Scholar 

  • Levine, S., Bell, G. M. andCalvert, D. (1962) The discreteness-of-charge effect in electric double layer theory.Canad. J. Chem.,40, 518–538.

    Article  Google Scholar 

  • Loeb, A., Wiersema, P. H. andOverbeek, J. Th. G. (1960)The electrical double layer around a spherical colloid particle. Computation of the potential, charge density and free energy of the electrical double layer around a spherical colloid particle. Mass. Inst. Techn. Press.

  • Lijklema, J. (1961) Geometrical factors in the capacity of the electrical double layer.Kolloid-Zschr.,175, 129–134.

    Article  Google Scholar 

  • Lyklema, J. andOverbeek, J. Th. G. (1961a). On the interpretation of electrokinetic potentials.J. Colloid Sci.,16, 501–512.

    Article  Google Scholar 

  • Lyklema, J. andOverbeek, J. Th. G. (1961b). Electrochemistry of silver iodide. The capacity of the double layer at the AgI/solution interface.J. Colloid Sci.,16, 595–608.

    Article  Google Scholar 

  • Lyklema, J. (1963) Ionic components of charge in the electrical double layer in reversible systems.Trans. Faraday Soc.,59, 418–427.

    Article  Google Scholar 

  • MacDonald, J. R. andBarlow, C. A. (1962) Theory of double layer differential capacitance in electrolytes.J. chem. Phys.,36, 3062–3080.

    Article  Google Scholar 

  • Mackor, E. L. (1951a) The properties of the electrical double layer—II. The zero point of charge of AgI in water-acetone mixtures.Rec. Trav. chim. Pays-Bas.,70, 747–762. (This work has been extended byWatillon, Overbeek andSerratosa (1957),Rec. Trav. chim. Pays-Bas. 76, 549–559).

    Google Scholar 

  • Mackor, E. L. (1951b) The properties of the electrical double layer—III. The capacity of the double layer on Hg and on AgI.Rec. Trav. chim. Pays-Bas,70, 763–783.

    Google Scholar 

  • Melik-Gaikazyan, V. J. andDolin, P. I. (1949) Measurement of the polarisation capacity of the mercury electrode in a broad frequency region.Doklady Akad. Nauk. S.S.S.R.,66, 409–412.

    Google Scholar 

  • Möhring, K. (1955) Methods for measuring voltage.Z. Elektrochem.,59, 102–114.

    Google Scholar 

  • Murtsaev, A. andGorodetskaya, A. (1936) The electrocapillary curve for gallium.Acta. Fysicochim., U.S.S.R.,4, 75–84;Chem. Abstr. (1937)31, 3.3647.

    Google Scholar 

  • Nikolskii, B. P., Shults, M. M. andPeshekhonova, N. V. (1958) The transition of glasselectrodes from one metal function to another.Zh. Fiz. Khim.,32, 262–269.

    Google Scholar 

  • Overbeek, J. Th. G. andMackor, E. L. (1951) La double couche entre le iodure d'argent et les solutions aqueuses et acétoniques. C.I.T.C.E., 3me Réunion (Milano 1952) p. 346. See also:Overbeek, J. Th. G.,Natl. Bur. Stand. U.S. Circ. (1953)524, 213.

  • Overbeek, J. Th. G. (1952)Electrochemistry of the double layer. InColloid Science, Vol. 1, pp. 115–193. Ed.H. R. Kruyt. Elsevier Publ. Cy., Amsterdam, Houston, New York, London.

    Google Scholar 

  • Overbeek, J. Th. G. andLijklema, J. (1959)Electric Potentials in Colloidal Systems. InElectrophoresis, Theory and Applications. Ed.M. Bier. Academic Press, New York.

    Google Scholar 

  • Parsons (1954)Equilibrium properties of electrified phases. InModern Aspects of Electrochemistry. Ed.J. O'M. Bockris. Butterworth, London.

    Google Scholar 

  • Passoth, G. (1954) Über die Hydratationsenergien und die scheinbaren Molvolumen einwertiger Ionen.Z. Phys. Chem.,203, 191 & 275–291.

    Google Scholar 

  • Pleskov, V. A. (1947) Electrode potentials and the solvation energy of ions.Uspekhi Khimii,16, 254–277.

    Google Scholar 

  • Popat, P. V. andHackerman, N. (1958) Capacity of the electrical double layer and adsorption at polarized platinum electrodes—I. Adsorption of anions.J. phys. Chem.,62, 1198–1203.

    Article  Google Scholar 

  • Proskurnin, M. A. andVorsina, M. A. (1939) A method to study the electrode capacitance in dilute solutions.Doklady Akad. Nauk., S.S.S.R.,24, 915–917.

    Google Scholar 

  • Rakov, A. A., Borisova, T. I. andErshler, B.V. (1948) The double layer on an oxidized metal.Zh. Fiz. Khim.,22, 1390–1396;Chem. Abstr. (1949),43, 2.522h.

    Google Scholar 

  • Randles, J. E. B. (1956) The real hydration energies of ions.Trans. Faraday Soc.,52, 1573–1581.

    Article  Google Scholar 

  • Schapink, F. W., Oudeman, M., Leu, K. W. andHelle, J. N. (1960) The adsorption of thiourea at a mercury-solution interface.Trans. Faraday Soc.,56, 415–423.

    Article  Google Scholar 

  • Schwabe, K. undDahms, H. (1961) Vergleichende Untersuchungen der elektromotorischen Eigenschaften und des chemischen Verhaltens von Glaselektroden mit Hilfe radioaktiver Indikatoren.Z. Elektrochem.,65, 518–526.

    Google Scholar 

  • Shults, M. M., Peshekhonova, N. V., Romanova, L. M. andAdrianov, A. A. (1962) An investigation of the electrode properties of lithium-alumino silicate glasses.Vestnik Leningr. Univ.,17, No. 16, Ser. Fiz. i Khim., No. 3, pp. 108–115, andShultz, M. M., Belyustin, A. A., pp. 116–124.

    Google Scholar 

  • Shvarts, E., Damaskin, V. V. andFrumkin, A. N. (1962) On the nature of the maxima in the differential capacity curves.Zh. Fiz. Khim.,36, 2419–2427.

    Google Scholar 

  • Sparnaaij, M. J. (1958) Corrections of the theory of the flat diffuse double layer.Rec. Trav. chim. Pays-Bas,77, 872–888.

    Google Scholar 

  • Sparnaaij, M. J. (1961) Elektrische Doppelschichten—III. Intern. Kongress für Grenzflächenaktiven Stoffe, Köln, Band II. Sektion B (Ed. 1961), pp. 232–253.

    Google Scholar 

  • Sparnaaij, M. J. (1962) Corrections of the theory of the stability of hydrophobic colloids. The specific influence of ions.Rec. Trav. chim. Pays-Bas,81, 395–416.

    Google Scholar 

  • Stern, O. (1924) Zur Theorie der elektrolytischen Doppelschicht.Z. Elektrochem.,30, 508–516.

    Google Scholar 

  • Stillinger, F. H. andKirkwood, J. G. (1960) Theory of the diffuse double layer.J. chem. Phys.,33, 1282–1290.

    Article  MathSciNet  Google Scholar 

  • Strehlow, H. (1952) Zum Problem des Einzelelektrodenpotentials.Z. Elektrochem.,56, 119–129.

    Google Scholar 

  • Tendeloo, H. J. C., Mans, A. E., Kateman, I. andvan der Voort, F. H. (1962) Electrochemical properties of a new glass-electrode containing beryllium oxide.Rec. Trav. chim. Pays-Pays,81, 505–509.

    Google Scholar 

  • Verwey, E. J. W. (1940) Absolute grootte van thermodynamische grootheden voor ionen in waterige oplossingen en van den electrischen potentiaalsprong aan het vrije oppervlak van water.Chem. Weekblad,37, 530–537.

    Google Scholar 

  • Verwey, E. J. W. (1942) The electrical potential drop at the free surface of water and other phase boundary potentials.Rec. Trav. chim. Pays-Bas,61, 564–572.

    Google Scholar 

  • Vorsina, M. A. andFrumkin, A. N. (1939) The capacity of a mercury electrode in dilute solutions of HC1 and KC1.Doklady Akad. Nauk. S.S.S.R.,24, 918–921;Chem. Abstr. 1940,34, 3.9907.8.

    Google Scholar 

  • Watanabe, A., Tsuji, F. andUeda, S. (1956) Capacitance measurement of a dropping mercury electrode with a resonance method.Bull. Inst. Chem. Res., Kyoto Univ.,34, 1–9;Chem. Abstr. (1957),51, 4844b.

    Google Scholar 

  • Watanabe, A., Tsuji, F. andUeda, S. (1975)Study on interfacial double layer capacity. Proc. 2nd Int. Congress. Surface Activity, London 1957. Vol. 3, pp. 94–102.

    Google Scholar 

  • Whitney, R. B. andGrahame, D. C. (1941) A modified theory of the electrical double layer.J. chem. Phys.,9, 827–828.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Based on an invited paper presented at the 5th International Conference on Medical Electronics, Liège, July 1963.

The russian translation of the abstract to this paper will be printed in a loose-leaf insert to be distributed with the next issue of the Journal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lyklema, J. The measurement and interpretation of electric potentials from a physico-chemical point of view. Med. Electron. Biol. Engng 2, 265–280 (1964). https://doi.org/10.1007/BF02474623

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02474623

Keywords

Navigation