Skip to main content
Log in

Oxygen and carbon dioxide transfer in membrane oxygenators

  • Published:
Medical and biological engineering Aims and scope Submit manuscript

Abstract

Gas transfer in membrane oxygenators can be limited by the liquid dispersion or the membrane diffusion. If limited by liquid dispersion, the increase in average oxygen saturation of blood flowing in straight gas-permeable tubes is dependent upon the flow rate, the tube length, and the diffusion coefficient and independent of the tube diameter. The mathematical solution is surprisingly insensitive to shifts of the oxyhemoglobin dissociation curve. The assumptions utilized in the model and the analytic solution were verified by a series of experiments using cattle blood. Tube staging, turbulence, and tube coiling bring about mixing and significantly improve the oxygenation rate. For coiled tubes, the oxygenation efficiency depends on the Reynolds number, the Schmidt number, and the tightness of the coil. The limit on the rate of oxygen addition and carbon dioxide removal might be imposed, for thick-walled tubes, by the diffusion through the tube wall. The wall-limited case is governed by CO2 removal.

Sommaire

Le transfert des gaz dans les oxygénateurs à membrane peut être limité par la dispersion du liquide ou la diffusion de la membrane. S'il est limité par la dispersion du liquide, l'accroissement de la saturation moyenne d'oxygène du sang circulant dans des tubes rectilignes poreux dépend du débit, de la longueur du tube, du coefficient de diffusion, et est indépendant du diamètre du tube. Il est surprenant de noter que la solution mathématique se trouve être insensible aux dérives de la courbe de dissociation de l'oxyhémoglobine. Les hypothèses retenues pour le modèles et pour la solution analytique sont vérifiées par une série d'expériences utilisant du sang d'animaux. La succession de tubes, les turbulences et la courbure des tubes provoque un brassage qui augmente le taux d'oxygénation de façon significative. Pour les tubes en serpentin, l'efficacité de l'oxygénation dépend du nombre de Reynolds, du nombre de Schmidt et de l'étroitesse du serpentin. La limite au taux d'addition d'oxygène et à l'élimination de gaz carbonique peut être imposée au moyen de la diffusion à travers la paroi, pour les tubes à parois épaisses. C'est l'élimination du gaz carbonique qui régit cette limitation par la paroi.

Zusammenfassung

Die Gasübertragung in Membranoxygenatoren kann durch die Flüssigkeitsdispersion oder die Membrandiffusion limitiert werden. Liegt die Begrenzung in der Flüssigkeitsdispersion, so hängt der Anstieg der durchschnittlichen Sauerstoffsättigung des in geraden gaspermeablen Schläuchen fließenden Blutes von der Strömungsgeschwindigkeit, der Schlauchlänge und dem Diffusionskoeffizienten ab, während er vom Schlauchdurchmesser unabhängig ist. Die mathematische Lösung ist erstaunlich unempfindlich gegenüber Verschiebungen in der Oxyhämoglobin-Dissoziationskurve. Die in dem Modell und in der analytischen Lösung benutzten Annahmen wurden in einer Reihe von Versuchen mit Rinderblut bestätigt. Durch entsprechende Lagerung und Wickelung der Schläuche und durch Turbulenz wird gemischt und eine bedeutende Verbesserung der Oxygenationsgeschwindigkeit erzielt. Bei gewickelten Schläuchen hängt die Wirksamkeit der Oxygenation von der Reynoldschen Zahl, der Schmiatschen Zahl und der Enge der Wicklung ab. Bei dickwandigen Schläuchen kann eine Geschwindigkeitsbegrenzung der Sauerstoffzugabe und der Kohlendioxydabgabe per Diffusion durch die Schlauchwand gegeben sein. Der wandbegrenzte Fall ist von der CO2-Entfernung gesteuert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C :

concentration of oxygen or carbon dioxide in plasma

C 0 :

initial plasma oxygen or carbon dioxide concentration

C :

plasma oxygen or carbon dioxide concentration at the wall

D :

diffusivity of oxygen or carbon dioxide

f(C):

sink term in oxygen balance, a function proportional to the slope of the oxyhemoglobin dissociation curve

F :

function

K :

helix radius

K * :

coil ratio

L :

total length of tubing

L t :

length of tubes in the ith stage

M :

number of stages in an oxygenator

N i :

number of tubes in the ith stage

N Re :

Reynolds number

N Sc :

Schmidt number

pCO2 :

partial pressure of carbon dioxide

pO2 :

partial pressure of oxygen

Q :

blood flow rate

r :

radial distance coordinate

r * :

dimensionless radial distance coordinate

R :

radius of tube

R i :

inner radius of annulus

R 0 :

outer radius of annulus

S :

local oxygen saturation of blood

\(\bar S\) :

cup-mixed oxygen saturation of blood

S 0 :

initial saturation of blood

V:

velocity of blood

V m :

cross sectional average velocity of blood

V z :

axial component of blood velocity

z :

axial distance coordinate

z * :

dimensionless axial distance coordinate

ΔS t :

saturation increase of the ith stage

v :

kinematic viscosity

θ:

angular measure in cylindrical coordinatesm

References

  • Bennett, L., Gatstein H. andSchneck, D. (1965) Velocity profile determination for flowing blood,Rev. Scient. Instrum. 36, 625.

    Article  Google Scholar 

  • Benvenuto, R. andLewis, F. J. (1959) Influence of some physical factors upon oxygenation with a plastic membrane oxygenator.Surgery 46, 1099.

    Google Scholar 

  • Bluestein, M. andMockros, L. F. Hemolytic effects of energy dissipation in flowing blood.Med. & Biol. Engng 7, 1–16.

  • Bugliarello, G. andHayden, J. W. (1963) Detailed characteristics of the flow of bloodin vitro.Trans. Soc. Rheol. 7, 209.

    Article  Google Scholar 

  • Clowes, G. H., Jr., Hopkins, A. L. andNeville, W. E. (1956) An artificial lung dependent upon diffusion of oxygen and carbon dioxide through plastic membranes.J. thorac. Surg. 32, 630.

    Google Scholar 

  • Dean, W. R. (1927) Note on the motions of fluid in a curved pipe.Phil. Mag. 4, 208.

    MATH  Google Scholar 

  • Dow Corning Corporation.Gas Transmission Rates of Plastic Films, July 1, 1959.

  • Galletti, P. M. andBrecher, G. A. (1962)Heart Lung Bypass, Grune & Stratton.

  • Jakob, M. (1949)Heat Transfer, Vol. I, Wiley.

  • La Force, Conley, R. andFatt, I. (1962) Steady-state diffusion of oxygen through whole blood.Trans. Faraday Soc. 58, 1451.

    Article  Google Scholar 

  • Lewis, F. J., Benvenuto, R. andDemetrakopoulos, N. (1958) A new pump-oxygenator employing polyethylene membranes.Quart. Bull. Nwest. Univ. med. Sci. 32, 262.

    Google Scholar 

  • Marx, T. I., Snyder, W. E., St John A. D. andMoeller, C. E. (1960) Diffusion of oxygen into a film of whole blood.J. appl. Physiol. 15, 1123.

    Google Scholar 

  • Melrose, D. G., Bramson, M. L., Osborn, J. J. andGerbode, F. (1958) The membrane oxygenator.The Lancet 1, 1050.

    Article  Google Scholar 

  • Merrill, W. andPelletier, G. H. (1967) Viscosity of human blood: transition from Newtonian to non-Newtonian.J. appl. Physiol. 23, 178.

    Google Scholar 

  • Sellars, J. R., Tribus, M. andKlein, J. S. (1956) Heat transfer to laminar flow in a round tube or flat conduit —the Graetz problem extended.Trans. Am. Soc. mech. Engrs 78, 441.

    Google Scholar 

  • Spaeth, E. E. andFriedlander, S. K. (1967) The diffusion of oxygen, carbon dioxide, and inert gas in flowing blood.Biophys. J. 7, 827

    Article  Google Scholar 

  • Weissman, M. H. andMockros, L. F. (1967) Oxygen transfer to blood flowing in round tubes.J. Engng Mech. Div. Am. Soc. civ. Engrs 93, 225.

    Google Scholar 

  • Weissman, M. H. andMockros, L. F. (1968) Gas transfer to blood flowing in coiled circular tubes.J. Engng Mech. Div. Am. Soc. civ. Engrs 94, 957.

    Google Scholar 

  • Yarborough, K. A., Mockros, L. F. andLewis, F. J. (1966) Hydrodynamic hemolysis in extracorporeal machines.J. thorac. and cardiovasc. Surg. 52, 550.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weissman, M.H., Mockros, L.F. Oxygen and carbon dioxide transfer in membrane oxygenators. Med. & biol. Engng. 7, 169–184 (1969). https://doi.org/10.1007/BF02474173

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02474173

Keywords

Navigation