Skip to main content
Log in

Models for creep of concrete, with special emphasis on probabilistic aspects

  • Published:
Matériaux et Construction Aims and scope Submit manuscript

Abstract

Six simple requirements are presented for constitutive equations for creep of concrete stressed within the working range. The resulting theory is not complete, but a unique representation of irreversible creep is obtained. The use of products of age and duration functions is shown to be unsuitable for representation of total creep, but is useful for reversible creep. There are several adequate representations of reversible creep and some of these are reviewed. The use of the methods of viscoelastic theory in stress analysis and some aspects of non-linear behaviour are briefly discussed. The question of whether creep of a macroscopic specimen at constant temperature and humidity is a stochastic process is examined on the basis of a set of experimental results and by taking into account the fact that macroscopic creep is the sum (both spatially and temporarily) of a very large number of molecular events. It is concluded that creep curves are different in scale but are not stochastic, in the sense that they exhibit negligible scatter about the mean of the particular curve being measured. However, gauge, temperature and humidity variation can cause stochastic variation. Lastly, a Bayesian approach to the engineering problem of dealing with uncertainty regarding the magnitude of creep is suggested.

Résumé

Dans cet article on décrit les six conditions à remplir par les équations constitutives pour le fluage du béton soumis à des contraintes dans les conditions de service. Il en résulte une théorie qui n'est pas complète, mais on obtient une représentation unique du fluage irréversible. On montre que l'utilisation des produits des fonctions de l'âge au moment du chargement et dans l'intervalle qui suit, ne convient pas à la représentation du fluage total, mais que celle-ci est utile dans le cas du fluage réversible. Il existe plusieurs représentations adéquates du fluage réversible, dont quelques-unes sont présentées. L'utilisation des méthodes de la théorie visco-élastique dans l'analyse de la contrainte des structures en béton est brièvement résumée; ainsi que quelques aspects des effects non linéaires. On examine la question suivante: le fluage d'un spécimen macroscopique à une température et une humidité constantes est-il un processus stochastique? Cette étude s'appuie sur un ensemble de résultats expérimentaux, et tient compte du fait que le fluage macroscopique est la somme, sur un plan spatial ainsi que temporel, d'un très grand nombre d'évènements moléculaires. On en conclut que les courbes de fluage sont à des échelles différentes, mais ne sont pas stochastiques, dans le sens qu'elles présentent une dispersion négligeable autour de la moyenne de la courbe particulière que l'on mesure. Néanmoins, les variations de température et d'humidité peuvent causer une variation stochastique. Enfin, on propose d'appliquer le théorème de Bayes au problème technique que pose le manque de certitude à propos du degré de fluage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jordaan I. J., England G. L., Khalifa M. M. A.Creep of concrete: a consistent engineering approach. Journal of the Structural Division, ASCE, Vol. 103, No. ST3, March 1977, pp. 475–491.See also discussion by Z. P. Bazant and authors' reply, June 1978, pp. 1020–1025.

    Google Scholar 

  2. Jordaan I. J., Munro J.Probability in civil engineering decisions. Department of Civil Engineering, University of Calgary, Research Report No. CE78-2, 1978, 41 p.

  3. Mills R. H.Collapse of structure and creep in concrete. Structure, Solid Mechanics and Engineering Design, Proceedings of the Southampton 1969 Civil Engineering Materials Conference,M. Te'eni, Ed., Wiley 1971, pp. 751–768.

  4. Slate F. O., Meyers B. L.Some physical processes involved in creep of concrete. Structure, Solid Mechanics and Engineering Design, Proceedings of the Southampton 1969 Civil Engineering Materials Conference,M. Te'eni, Ed. Wiley 1971, pp. 769–773.

  5. Parrott L. J.Recoverable and irrecoverable deformation of heat-cured cement paste. Magazine of Concrete Research, Vol. 29, No. 98, 1977, pp. 26–30.

    Article  Google Scholar 

  6. Jordaan I. J., Illston J. M.Time-dependent strains in sealed concrete under systems of variable multiaxial stress. Magazine of Concrete Research, Vol. 23, No. 75/76, 1971, pp. 79–88.

    Google Scholar 

  7. Neville A. M.Creep of concrete: plain reinforced and prestressed. North-Holland, Amsterdam, 1970, 622 p.

    Google Scholar 

  8. Glucklich J., Ishai O.The effect of temperature on the deformation of hardened cement paste. RILEM International Symposium on Concrete and Reinforced Concrete in Hot Countries, July 1960.

  9. Hansen T. C.Creep and stress relaxation of concrete. Swedish Cement and Concrete Institute, Royal Institute of Technology, Stockholm, 1960, 112 p.

    Google Scholar 

  10. Nasser K. W., Neville A. M.Creep of concrete at elevated temperatures. Journal of the American Concrete Institute, Proceedings, Vol. 62, No. 12, Decemeber 1965. pp. 1567–1579.

    Google Scholar 

  11. Arthanari S., Yu C. W.Creep of concrete under uniaxial and biaxial stresses at elevated temperatures.— Magazine of Concrete Research, Vol. 19, No. 60, September 1967, pp. 149–156.

    Google Scholar 

  12. Illston J. M., Sanders P. D.Characteristics and prediction of creep of a saturated mortar under variable temperature. Magazine of Concrete Research, Vol. 26, No. 88, September 1974, pp. 169–179.

    Google Scholar 

  13. Fahmi H. M., Polivka M., Bresler B.Effect of sustained and cyclic elevated temperature on creep of concrete. Cement and Concrete Research, Vol. 2, pp. 591–606.

  14. Neville A. M.Recovery of creep and observations on the mechanism of creep of concrete. Applied Scientific Research, Section A, Vol. 9, 1959, pp. 71–84.

    Google Scholar 

  15. Parrott L. J.Some observations on the components of creep in concrete. Magazine of Concrete Research, Vol. 22, No. 72, 1970, pp. 143–148.

    Google Scholar 

  16. Meyers B. L., Slate F. O.Creep and creep recovery of plain concrete as influenced by moisture conditions and associated variables. Magazine of Concrete Research, Vol. 22, No. 70, 1970, pp. 37–41.

    Google Scholar 

  17. Jordaan I. J.Analysis of creep in concrete structures under general states of stress. IABSE Seminar on Concrete Structures subjected to Triaxial Stresses, Bergamo Italy, May 1974.

  18. Rüsch H., Jungwirth D., Hilsdorf H.Kritische Sichtung der Einflusse von Kriechen and Schwinden des Betons auf das Verhalten der Tragwerke. Beton-und Stahlbetonbau, Vol. 68, Nos. 3, 4 and 5, 1973.

  19. Bazant Z. P.Viscoelasticity of solidifying porous material. Journal of the Engineering Mechanics Division, ASCE, Vol. 103, 1977, pp. 1049–1067.

    Google Scholar 

  20. Illston J. M.Components of creep in mature concrete. Journal of the American Concrete Institute, Vol. 65, No. 18, March 1968, pp. 219–228.

    Google Scholar 

  21. Glucklich, J., Ishai O.Rheological behavior of hardened cement paste under low stresses. ACI Journal, Proceedings, Vol. 57, 1961, pp. 947–964.

    Google Scholar 

  22. Ishai O.Elastic and inelastic behavior of cement mortar in torsion. Symposium on Creep of Concrete, ACI Special Publication, No. 9, 1964, pp. 65–94.

    Google Scholar 

  23. Illston J. M.The components of strain in concrete under sustained compressive stress. Magazine of Concrete Research, Vol. 17, No. 50, March 1965, pp. 21–28.

    Google Scholar 

  24. Bazant Z. P.Phenomenological theories for creep of concrete based on rheological models. Acta Technica, CSAV, Vol. 11, No. 1, 1966, pp. 82–109.

    Google Scholar 

  25. Nielsen L. F.Effects of creep in uncracked composite structures of steel and concrete. Bygningsstatiske Meddelelser, Vol. 38, No. 3, 1967, pp. 65–88.

    Google Scholar 

  26. Nielsen L. F.On the applicability of the modified Dischinger equations. Cement and Concrete Research, Vol. 7, 1977, pp. 149–160.

    Article  Google Scholar 

  27. Nielsen L. F.The improved Dischinger method as related to other methods and practical applicability. ACI Symposium on “Designing for Creep and Shrinkage in Concrete Structures”, October–November, 1978.

  28. Ross A. D.Creep of concrete under variable stress. Journal of the American Concrete Institute, Vol. 54, March 1958, pp. 739–758.

    Google Scholar 

  29. England G. L.Steady-state stresses in concrete structures subjected to sustained loads and temperatures: Parts I and II Nuclear Engineering and Design, Vol. 3, 1966, pp. 54–65 and 246–255.

    Article  Google Scholar 

  30. England G. L.The direct calculation of stresses in creeping concrete and concrete structures. Structure, Solid Mechanics and Engineering Design, Proceedings of the Southampton 1969 Civil Engineering Materials Conference, London, Wiley-Interscience, 1971, pp. 1269–1276.

  31. Gamble B. R., Jordaan I. J.A direct method of viscoelastic analysis for ageing concrete. Maretials and Structures (RILEM), Vol. 7, No. 37, 1971, pp. 37–43.

    Google Scholar 

  32. Jordaan I. J.A note on concrete creep analysis under static temperature fields. Materials and Structures (RILEM), Vol. 7, No. 41, September–October 1974, pp. 329–333.

    Google Scholar 

  33. Constantinescu D. R., Illston J. M.Direct solutions to problems of time-dependent induced strains in restrained concrete. Materials and Structures, Vol. 8, No. 43, 1975, pp. 11–17.

    Google Scholar 

  34. Jordaan I. J., Khalifa M. M. A.Creep analysis of reinforced and prestressed concrete structures under nonuniform temperature distributions, using elastic solutions. International' Journal for Numerical Methods in Engineering, Vol. 11, 1977, pp. 883–895.

    Article  Google Scholar 

  35. Jordaan I. J., Khalifa M. M. A.Time-dependent stresses in heated concrete structures. Douglas McHenry International Symposium on Concrete and Concrete Structures ACI, SP 55, 1978, pp. 321–346.

    Google Scholar 

  36. England G. L., Jordaan I. J.Time-dependent and steady-state stresses in concrete structures with steel reinforcement, at normal and raised temperatures. Magazine of Concrete Research, Vol. 27, No. 92, September 1975, pp. 131–142.

    Google Scholar 

  37. Glucklich J.Rheological behaviour of hardened cement paste under low stresses. ACI Journal, Proceeding, Vol. 56, 1959, pp. 327–338.

    Google Scholar 

  38. Bazant Z. P., Wu S. T.Thermoviscoelasticity of ageing concrete. Journal of the Engineering Mechanics Division, ASCE, Vol. 100, 1974, pp. 575–597.

    Google Scholar 

  39. Cornell C. A.Stochastic process models in structural engineering. Department of Civil Engineering, University of Stanford, Technical Report No. 34, 1964.

  40. Benjamin J. R., Cornell C. A., Gabrielsen B. L.Stochastic model of creep deflection of reinforced concrete beams. Flexural Mechanics of Reinforced Concrete, ACI, SP 12, 1965, pp. 557–580.

    Google Scholar 

  41. Chow T. Y. Shah H. C.Markov process model for creep of concrete under sustained compressive stresses. Structure, Solid Mechanics and Engineering Design, Proceedings of the Southamption 1969 Civil Engineering Materials Conference,M. Te'eni, Ed., Wiley, 1971, pp. 775–787.

  42. Cinlar E., Bazant Z. P., Osman E.Stochastic process for extrapolating concrete creep. Journal of the Engineering Mechanics Division, ASCE, Vol. 103, 1977, pp. 1069–1088.

    Google Scholar 

  43. Parzen E.Stochastic processes. Holden-Day, San Francisco, 1962.

    MATH  Google Scholar 

  44. L'Hermite R. G., Mamillan M.Further results of shrinkage and creep tests. The Structure of Concrete, Proceedings of the International Conference, 1965,A. E. Brooks andK. Newman, Eds., Cement and Concrete Association, London, 1968, pp. 423–433.

    Google Scholar 

  45. Jordaan I.J.The time-dependent strains of concrete under multiaxial systems of stress. Ph. D. thesis, University of London, 1969.

  46. Binns R. D., Mygind H. S.The use of electrical resistance strain gauges and the effect of aggregate size on gauge in connection with the testing of concrete. Magazine of Concrete Research, Vol. 1, January 1949, pp. 35–39.

    Google Scholar 

  47. Gamble B. R.— Private communication, 1978.

  48. Woo M. K.Modelling daily temperature time series. Canadian Geographer, XVII, 1973, pp. 315–326.

    Article  Google Scholar 

  49. Shrive N. G., Gillott J. E., Jordaan I. J., Loov R. E.A study of durability in temperature cycles and water resistance of sulfur concretes and mortars. Journal of Testing and Evaluation, Vol. 5, 1977, pp. 484–493.

    Article  Google Scholar 

  50. Powers T. C.Mechanisms of shrinkage and reversible creep of hardened cement paste. The Structure of Concrete Proceedings of the International Conference, 1965,A. E. Brooks andK. Newman, Eds., Cement and concrete Assiciation, London, 1968, pp. 319–344.

    Google Scholar 

  51. Lindley D. V.Introduction to probability and statistics, from a Bayesian viewpoint. Part, 2, Inference. Cambridge University Press, 1970.

  52. Box G. E. P., Tiao G. C.Bayesian inference in statistical analysis, Addison, Wesley, 1973.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jordaan, I.J. Models for creep of concrete, with special emphasis on probabilistic aspects. Mat. Constr. 13, 29–40 (1980). https://doi.org/10.1007/BF02474019

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02474019

Keywords

Navigation