Lithuanian Mathematical Journal

, Volume 36, Issue 1, pp 115–123 | Cite as

On some generalized integers

  • E. Stankus
Article
  • 22 Downloads

Keywords

Prime Number Asymptotic Formula Generalize Integer Prime Number Theorem Fixed Positive Number 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Bateman. The distribution of values of the Euler function,Acta Arith.,21, 329–344 (1972).MATHMathSciNetGoogle Scholar
  2. 2.
    A. Beurling, Analyse de la loi asymptotique de la distribution des nombres premiers généralisés. I.Acta Math.,68, 225–291 (1937).Google Scholar
  3. 3.
    H. Diamond, Interpolation of the Dirichlet divisor problem,Acta Arith.,13, 151–168 (1967).MATHMathSciNetGoogle Scholar
  4. 4.
    H. Diamond, Asymptotic distribution of Beurling's generalized integers,Illinois J. Math.,14, 12–28 (1970).MATHMathSciNetGoogle Scholar
  5. 5.
    P. Malliavin, Sur la reste de la loi asymptotique de répartion des nombres premiers généralisés de Beurling,Acta Math.,106, 281–298 (1961).MATHMathSciNetGoogle Scholar
  6. 6.
    B. Nyman, A general prime number theorem,Acta Math.,81, 299–307 (1949).MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    H. Richert, Zur Abshätzung der Riemannshen Zetafunktion in der Nähe der Vertikalen σ=1,Math. Ann.,169, 97–101 (1976).MathSciNetCrossRefGoogle Scholar
  8. 8.
    C. Ryavec, The analytic continuation of Euler products with applications to asymptotic formulae.Illinois J. Math.,17, 608–618 (1973).MATHMathSciNetGoogle Scholar
  9. 9.
    A. Smati, Evaluation effective du nombre d'entiersn tels que φ(n)≤x, Acta Arith.,61, 143–159 (1992).MATHMathSciNetGoogle Scholar
  10. 10.
    E. Stankus, On Beurling's generalized integers, Vilnius University, Preprint 94-9 (1994), 8 p.Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • E. Stankus

There are no affiliations available

Personalised recommendations