Matériaux et Construction

, Volume 6, Issue 4, pp 269–276 | Cite as

Stochastic analysis for time-dependent load transfer in reinforced concrete columns

  • A. B. O. Soboyejo
Article
  • 55 Downloads

Abstract

A stochastic process model is proposed for the phenomenon of time-dependent stress transfer from concrete to steel in reinforced concrete columns, subjected to axial loading. The phenomenon is caused by the mechanisms of creep and shrinkage. The importance of the stochastic model is brought out, in that it is now possible to have more meaningful information concerning the phenomenon under study. Furthermore, the importance of the stochastic model in practical problems involving the estimation of possible long-time stresses in structures, is mentioned. The results of the stochastic model are compared with practical tests results, and good agreements are obtained.

Keywords

Shrinkage Creep Strain Creep Mechanism Concrete Column Shrinkage Strain 

Notation

Pc(0)

load on the concrete at the initial time of loading which in this case is considered as timet=0

Ps(0)

load on the steel at the initial time of loadingt=0

P

total load taken up by the column

As

area of steel

Ac

area of concrete

Es

modulus of elasticity of steel

Ec

modulus of elasticity of concrete; this value is assumed to be constant

c(t)

specific creep strain for concrete at any timet≥0, it has the dimensions of strain/stress, since it represents creep strain per unit stress

s(t)

shrinkage strain at any timet≥0 for the concrete

θ

\(\frac{{pEs}}{{1 + (n - 1)p}}\)

S

k(s) Ac

p

steel ratio

n

Es/Ec

μ

Θ/A

M1(t)

the mean or expected value

\(\sigma _{1^2 } (t, t)\)

the variance function

\(\sigma _{1^2 } (t, s)\)

the covariance function, of the load\(\bar Pc(t)\) on the concrete due to creep mechanism alone

S

maximum shrinkage load capacity for the concrete

fc(t)

stress on concrete at timet

fs(t)

stress on steel at timet

Résumé

On présente un modèle de traitement stochastique de transfert de charge en fonction du temps du béton à l'acier dans des poteaux de béton armé soumis à une charge axiale constante et permanente. Ce phénomène est principalement dû au fluage et au retrait du béton. On définit d'abord un modèle déterministe qui consiste en une représentation idéalisée et simplifiée susceptible de fournir une bonne approximation du phénomène réel.

Une fois le modèle mathématique mis au point, le choix du modèle de traitement stochastique dépend des mécanismes physiques réels du fluage et du retrait dans les poteaux de béton armé, ainsi que de la nature du modèle mathématique. Le modèle de traitement stochastique est un modèle probabiliste qui donne une fonction moyenne, reproduisant en fait le modèle mathématique et, en outre, les fonctions de variance et de covariance.

La fonction de variance autorise la formulation d'énoncés relatifs aux limites inférieures et supérieures de transfert de charge en fonction du temps, ainsi que pour le même phénomène, des énoncés relatifs aux écarts possibles de la fonction moyenne.

Les résultats fournis par le modèle de traitement stochastique sont comparés à ceux obtenus récemment en ce domaine par l'étude expérimentale; on constate que la concordance est très bonne.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Soboyejo A.B.O.A study of creep, stress relaxation and rheological properties of concrete. C.E. Thesis, Stanford University, Stanford, California, 1964.Google Scholar
  2. [2]
    Glanville W.H.The creep or flow of concrete under load. Building Research Station Tech. Paper No. 12, London, 1930.Google Scholar
  3. [3]
    Ross A.D.Concrete creep data The Structural Engineer, London, Vol. 15, No. 8, 1937.Google Scholar
  4. [4]
    Holm T.A., Pistrang J.Time dependent load transfer in reinforced lightweight concrete columns. Journal ACI, Proc. Vol. 63, No. 11, November 1966.Google Scholar
  5. [5]
    Soboyejo A.B.O.Plastic flow in reinforced concrete. Technical Report No. 52, Dept. of Civil Engineering, Stanford Univ., Stanford, California, June 1965.Google Scholar
  6. [6]
    Meyers B.L.A review of literature pertaining to creep and shrinkage of concrete. Engineering Series Bulletin No. 56, University of Missouri, 1963.Google Scholar
  7. [7]
    Troxell C.E., Raphael J.M., Davies R.E.Long time creep and shrinkage tests of plain and reinforced concrete. Proc. ASTM, Vol. 58, pp. 1101–1120, 1958.Google Scholar
  8. [8]
    Benjamin J.R., Cornell C.A., Gabrielsen B.L.Stochastic model of creep deflection of reinforced concrete beams. Flexural Mechanics of reinforced concrete, ACI Special Publication No. 12, ACI-ASCE, 1965.Google Scholar
  9. [9]
    Parzen E.Stochastic processes. Holden Day Inc., San Francisco, California, 1962.MATHGoogle Scholar
  10. [10]
    Parzen E.Modern probability theory and its applications. John Wiley, New York, 1963.MATHGoogle Scholar
  11. [11]
    Bachura-Reid A.T.Elements of the theory of Markov processes and their applications. McGraw Hill, New York, 1960.Google Scholar
  12. [12]
    Soboyejo A.B.O.Discussion of the paper by Holm T.A. and Pistrang J.—Time dependent load transfer in reinforced lightweight concrete columns. Journal ACI, Part. 2, June 1967.Google Scholar

Copyright information

© Secrétariat de Rédaction 1973

Authors and Affiliations

  • A. B. O. Soboyejo
    • 1
  1. 1.Faculty of EngineeringUniversity of LagosLagosNigeria

Personalised recommendations