Matériaux et Construction

, Volume 7, Issue 4, pp 265–271 | Cite as

Mechanical behaviour of concrete as a composite material

  • C. V. S. Kameswara Rao
  • R. N. Swamy
  • P. S. Mangat
Article

Abstract

Several theories of composite materials have been used to predict the mechanical properties of concrete. In many cases there is no basis to judge the relative superiority of one model over that of the other. It is, however, essential that the model and the related assumptions are axiomatically acceptable, and have physical relevance to the problem under consideration. In this paper the suitability of a new model of multiphase materials to concrete is examined. It is shown that the model predicts the effective Young's modulus and shrinkage of concrete quite accurately. As far as prediction of creep behaviour is concerned, the model qualitatively compares well with many other models proposed earlier. However, further studies are essential into more refined formulation of the problem of creep phenomenon.

Keywords

Bulk Modulus Creep Strain Effective Modulus Effective Elastic Modulus Multiphase Material 

Résumé

On s'est appuyé sur plusieurs théories des matériaux composites pour prédire les propriétés mécaniques du béton. Dans beaucoup de cas, aucune base ne permet de juger de la supériorité relative d'un modèle sur un autre. Il importe pourtant que le modèle et les hypothèses qui lui sont associées soient axiomatiquement acceptables et qu'ils présentent une pertinence physique par rapport au problème étudié. On examine ici l'aptitude d'un nouveau modèle de matériaux polyphases à l'étude du béton. On montre que ce modèle permet de prédire le module de Young effectif et le retrait du béton très exactement pour ce qui regarde le comportement en fluage, qualitativement le modèle soutient la comparaison avec beaucoup d'autres modèles antérieurs. Mais une formulation plus affinée du problème du fluage exigera de nouvelles études.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Beran, M.J.Stastical continuous theories, Vol. 2, Monographs in Statistical Physics, Wiley Interscience, 1965.Google Scholar
  2. [2]
    Hashin, Z.Mechanics of heterogeneous media, Applied Mechanics Reviews, Vol. 17, No. 1, 1964, pp 1–8.Google Scholar
  3. [3]
    Chefdeville, M.L'auscultation dynamique du béton, Annales, Institut Technique du Bâtiment et des Travaux Publics, Paris, Série: Essais et Mesures, No. 16, July, 1950.Google Scholar
  4. [4]
    Dantu, P.Etude des contraintes dans les milieux hétérogènes. Application au béton, Annales, Institut Technique du Bâtiment et des Travaux Publics, Paris, Série: Essais et Measures, V. 40, No. 121, Jan. 1958, pp. 44–57.Google Scholar
  5. [5]
    Hansen, T.C.Creep of concrete. A discussion of some fundamental problems, Bulletin 33, Swedish Cement and Concrete Research Institute, Stockholm, Sept. 1958.Google Scholar
  6. [6]
    Hansen, T.C.Influence of aggregate and voids on the modulus of elasticity of concrete, cement mortar and paste, ACI Journal, Proceedings, V. 62, No. 2, Feb. 1965, pp. 193–216.Google Scholar
  7. [7]
    Hirsch, T.J.Modulus of elasticity of concrete affected by elastic moduli of cement paste matrix and aggregate, ACI Journal, Proceedings, V. 59, No. 3, March 1962, pp. 427–451.Google Scholar
  8. [8]
    Counto, V.J.The effect of the elastic modulus of the aggregate on the elastic modulus, creep and creep recovery of concrete, Magazine of concrete Research, Vol. 16, No. 48, Sept. 1964, pp. 129–138.Google Scholar
  9. [9]
    Hobbs, D.W.The dependence of the bulk modulus, Young's modulus, shrinkage and thermal expansion of concrete upon aggregate volume concentration, Technical Report TRA 437, Cement and Concrete Association, London, Dec. 1969, pp. 16.Google Scholar
  10. [10]
    Budiansky, B.On the elastic moduli of some heterogeneous materials, Journal of Mechanics and Physics of Solids, Vol. 13, 1965, pp. 223–227.CrossRefGoogle Scholar
  11. [11]
    Paul B.Prediction of elastic constants of multiphase materials, Transactions of the Metallurgical Society of AIME, Vol. 218, No. 1, Feb. 1960, pp. 36–41.Google Scholar
  12. [12]
    Hashin, Z.The elastic moduli of heterogeneous materials, Journal of Applied Mechanics, Vol. 29, No. 1, March 1962, pp. 144–150.MathSciNetGoogle Scholar
  13. [13]
    Kroner, E.Berchnung der Elastichen Kanstanten Des Viel Kristalls aus den Konstanten des Ein Kristalls, Z. Phys. Vol. 151, 1958, p. 504.CrossRefGoogle Scholar
  14. [14]
    Swamy, R.N.Aggregate-matrix interaction in concrete systems, Proceedings, International Conference on Structure, Solid Mechanics and Engineering Design, in Civil Engineering Materials, Southampton, Southampton University, April 1969, Wiley, Interscience, Dec. 1971, pp. 301–315.Google Scholar
  15. [15]
    Hashin, Z.Closure on Reference 11 above, Journal of Applied Mechanics, Vol. 29, No. 3, Dec. 1962, pp. 765–766.MathSciNetGoogle Scholar
  16. [16]
    Cribb, J.L.Shrinkage and thermal expansion of a two phase material, Nature, Vol. 220, Nov. 1968, pp. 576–577.Google Scholar
  17. [17]
    Pickett, G.Effect of aggregate on shrinkage of concrete and a hypothesis concerning shrinkage, ACI Journal Proceedings V. 52, Jan. 1956, pp. 581–590.Google Scholar
  18. [18]
    Neville, A.M.Creep of concrete, plain, reinforced and prestressed, North Holland Publishing Co., 1972.Google Scholar
  19. [19]
    Neville, A.M.Creep of concrete as a function of its cement paste content, Magazine of Concrete Research, Vol. 16, No. 46, March 1964, pp. 21–30.Google Scholar

Copyright information

© Secrétariat de Rédaction 1974

Authors and Affiliations

  • C. V. S. Kameswara Rao
  • R. N. Swamy
  • P. S. Mangat
    • 1
  1. 1.Department of Civil and Structural EngineeringUniversity of SheffieldSheffieldEngland

Personalised recommendations