Skip to main content
Log in

An ultimate shear strength theory for reinforced concrete T-beams without web reinforcement

  • Published:
Matériaux et Construction Aims and scope Submit manuscript

Abstract

A theory is presented to predict the ultimate shear strength of T-beams of long shear span without web reinforcement. Failure is assumed to occur in the compression zone above the diagonal crack due to the combined shearing and compressive stresses, and is based on Mohr's failure theory. Both equilibrium and compatibility conditions are considered, as well as the shear force due to dowel action of the longitudinal reinforcement. The theory is compared with the test results of the authors and other investigators, and is shown to predict the test results well. The theory is also compared with the ACI-ASCE and the Unified Code methods, and is shown to predict the results better.

Résumé

La rupture en cisaillement des poutres en T en béton armé s'accomplit en deux étapes. La première de ces étapes est caractérisée par une fissure oblique qui survient dans l'âme, et la seconde étape par la ruine définitive; lorsque la ruine se produit, à la force de cisaillement qui s'exerce sur la poutre s'oppose la zone de compression, la structure formée par l'agrégat et l'effet de goujon de l'armature longitudinale.

On présente ici une théorie susceptible de prédire la résistance ultime au cisaillement des poutres en T à grand intervalle de cisaillement sans renforcement de l'âme. Il est supposé que la ruine se produit dans la zone de compression au-dessus de la fissure diagonale engendrée par l'action combinée des contraintes de cisaillement et de compression, et elle s'appuie sur la théorie de la rupture de Mohr dans les conditions de sollicitations biaxiales. On examine à la fois les conditions d'équilibre et de compatibilité et l'on suppose que la distribution des contraintes de cisaillement et de compression dans la zone de compression critique au moment de la ruine par cisaillement est uniforme et rectangulaire. On suppose aussi que l'effet de goujon prend 10% de l'effort de cisaillement exercé. Comparée aux résultats d'essai obtenus par les auteurs et par d'autres chercheurs pour un certain nombre de paramètres, la théorie se révèle satisfaisante. La comparaison avec les codes britanniques et américains est à son avantage pour la précision des résultats d'essai.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

shear span

A s :

area of tension steel

A sb :

area of tension steel for balanced design

b :

width of compression flange

b c :

rib width

C :

compressive force in the compression zone

d :

effective depth

f :

normal stress

f 1,f 2,f 3 :

principal stresses

f c :

compressive stress in extreme fibre, or average compressive stress in the compression zone at the critical section at shear failure

f t :

limiting normal tensile strength-split cylinder strength

f c :

cylinder crushing strength

f c :

limiting normal compressive stress, equal to 0.85f c )

k 2 :

a constant

k f d :

depth of compression zone at flexural failure

k s d :

depth of compression zone at shear failure

K :

a constant

k i :

interaction coefficient

t :

flange thickness

v :

shear stress

v c :

limiting stress in pure shear

V c :

shear resistance of concrete in the compression zone at the critical section

V d :

shear resistance of main tensile steel due to dowel action

V u :

ultime shear strength of beams without web reinforcement

ϕ:

ratio of tensile to compressive strength concrete,f t /f c

References

  1. Guralnick S.A.Strength of reinforced concrete beams. Trans. Am. Soc. Civ. Eng., 1960, 125, 603–643.

    Google Scholar 

  2. Walther R.Calculation of the shear strength of reinforced and prestressed concrete beams by the shear failure theory. Cement and Concrete Association, Translation No. 110, 28.

  3. Hsu T.T.C.Torsion of structural concrete-plain concrete rectangular sections, Torsion of Structural Concrete. Special Publication No. 18, Am. Conc. Inst., Detroit, 1968, 203.

    Google Scholar 

  4. Cowan H.J.The strength of plain, reinforced and prestressed concrete under the action of combined stresses, with particular reference to the combined bending and torsion of rectangular sections. Mag. Conc. Res., 1953,5, Déc., 75–86.

    Google Scholar 

  5. Nadai A.Theory of flow and fracture of solids. Vol. 1, 2nd Edition, McGraw Hill & Co., New York, 1950.

    Google Scholar 

  6. Timoshenko S.Strength of materials, Part 2, 3rd Edition, D. Van Nostrand Co., Inc., New York.

  7. Taylor H.P.J.Investigation of the dowel shear forces carried by the tensile steel in reinforced concrete beams. Technical Report TRA 438, Cement and Concrete Association, London, Feb. 1970.

    Google Scholar 

  8. Andriopoulos A.D.Shear resistance of reinforced concrete beams without web reinforcement. M. Sc. Thesis, University of Leicester, 1968.

  9. Ramakrishman V.Factors affecting the ultimate shearing strength of reinforced concrete T-beams. Ph. D. Thesis, London University, 1960.

  10. Adepegba D.A theory of failure for reinforced concrete beams without web reinforcement subjected to bending and sheart. Ph. D. Thesis, University of Leicester, 1966.

  11. Al-Alusi A.F.Diagonal tension strength of reinforced concrete T-beams with varying shear spans. J. Am. Conc. Inst., 1957,53, May, 1067–1077.

    Google Scholar 

  12. Taylor R.Shear strength of reinforced concrete beams—T-beams without web reinforcement. Building Research Station, Note No. D585, Department of Scientific and Industrial Research, England, Feb. 1959, 10.

    Google Scholar 

  13. Wehr K.R.Shear strength of reinforced concrete T-beams. Purdue University Report, Jan. 1967.

  14. Ferguson P.M. andThompson J.N.Diagonal tension in T-beams without stirrups. J. Am. Conc. Inst., 1993,49, Mar., 665–676.

    Google Scholar 

  15. Thompson J.N., andFerguson P.M.Shear resistance of tile-concrete floor joists. J. Am. Conc. Inst., 1950,47, Nov. 229–236.

    Google Scholar 

  16. ACI-ASCE Committee 326Report on shear and diagonal tensions. J. Am. Conc. Inst., 1962,59, Jan, 1–30, Feb., 277–334, and March, 353–396.

  17. British Standards Institution, Draft British Standard Code of Practice forThe structural use of concrete, Sept. 1969, 241.

  18. Swamy R.N. andOureshi S.A.Strength, cracking and deformation similitude in reinforced T-beams under bending and shear. J. Am. Conc. Inst., 1971, 68, Mar. 187–195.

    Google Scholar 

  19. Swamy R.N., Bandyopadhyay A.K., andErikitola, M.K.Influence of flange width on the shear behaviour or reinforced concrete T-beams. Proc. Instr. Civ. Engrs., Vol. 55, March 1973, pp. 167–190.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swamy, R.N., Qureshi, S.A. An ultimate shear strength theory for reinforced concrete T-beams without web reinforcement. Mat. Constr. 7, 181–189 (1974). https://doi.org/10.1007/BF02473833

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02473833

Keywords

Navigation