Skip to main content
Log in

Concrete. A brittle fracturing material

  • Published:
Matériaux et Construction Aims and scope Submit manuscript

Abstract

Recent experimental information has indicated that (a) the post-peak behaviour of concrete is dependent on testing techniques to such an extent that its most realistic description is a complete and immediate loss of load-carrying capacity as soon as a peak level is exceeded, and (b) such “brittle” concrete behaviour at the material level is compatible with the observed ductile behaviour exhibited by reinforced concrete structural members. A model of concrete behaviour is proposed, therefore, which reflects both the above experimental information and the generally accepted view that the nonlinear behaviour of concrete is dictated by internal fracture processes. This model, termed appropriately brittle fracturing, is in compliance with previous work describing the fracture mechanism of concrete under short-term generalised stress.

Résumé

De récentes données expérimentales indiquent que (a) le comportement du béton au-delà d'une charge «de pointe» (proche de la rupture) dépend dans une si large mesure des techniques d'essai qu'on ne peut le décrire que comme une perte immédiate et complète de la capacité portante dès qu'on dépasse cette charge «de pointe» et (b) un tel comportement «fragile» du matériau béton est compatible avec le comportement ductile qu'on observe des éléments structuraux du béton armé. On propose donc un modèle de comportement du béton qui traduit aussi bien cette donnée expérimentale et le point de vue généralement accepté que le comportement non linéaire du béton est déterminé par des processus de rupture interne.

La description analytique s'appuie sur la décomposition de la réponse contrainte/déformation du matériau en composantes linéaires et non linéaires qui décrivent respectivement les durabilités réversibles et permanentes. La composante linéaire caractérise le comportement du matériau dans les conditions et de chargement et de déchargement; elle représente la composante du béton qui n'est pas affectée par les mécanismes de rupture interne. La composante non linéaire ne caractérise le comportement du matériau que sous charge et traduit la réponse du béton soumis à un état de contrainte de compression interne due aux processus de rupture.

Le modèle concorde avec les travaux antérieurs qui décrivent le mécanisme de résistance du béton sous contrainte généralisée à court terme et se trouve en bon accord avec les résultats expérimentaux publiés.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Argyris J. H., Faust G., Willam K. J.Finite element modeling of reinforced concrete, IABSE Colloquium on Advanced Mechanics of Reinforced Concrete, Delft 1981, Introductory report No. 33, pp. 85–106.

  2. Bazant Z. P., Bhat P. D.Endochronic theory of inelasticity and failure of concrete, Journal of the Engineering Mechanics Division, Proceedings of ASCE, Vol. 102, No. EM4 August 1976, pp. 701–722.

    Google Scholar 

  3. Bazant Z. P., Cedolin L.Blunt crack band propagation in finite element analysis, Journal of the Engineering Mechanics Division, Proceedings of ASCE, Vol. 105, No. EM2, April 1979, pp. 297–315.

    Google Scholar 

  4. Bazant Z. P., Kim S. S.Plastic-fracturing theory for concrete, Journal of the Engineering Mechanics Division, Proceedings of ASCE, Vol. 105, No. EM3, June 1979, pp. 407–428.

    Google Scholar 

  5. Bazant Z. P., Tsubaki T.Total strain theory and path-dependence of concrete, Journal of the Engineering Mechanics Division, Proceedings of ASCE, Vol. 106, No. EM6, December 1980, pp. 1151–1173.

    Google Scholar 

  6. Fardis M. N., Alibe B., Tassoulas J. L.Monotonic and cyclic constitutive law for concrete, presented at the joint ASCE/ASME Engineering Mechanics Conference on “inelasticity and nonlinearity in concrete behaviour”, Boulder, Colorado, June 22–24, 1981.

  7. Gerstle K. H. et al.Strength of concrete under multiaxial stress states, ACI special publication SP-55, 1978, pp. 103–131.

    Google Scholar 

  8. Gerstle K. H. et al.Behaviour of concrete under multiaxial stress states, Journal of the Engineering Mechanics Division, Proceedings of ASCE, Vol. 106, No. EM6, December 1980, pp. 1383–1403.

    Google Scholar 

  9. Hsu T. T. C., Slate F. O., Sturman G. M., Winter G.Microcracking of plain concrete and the shape of the stress-strain curve, ACI Journal, Proceedings Vol. 60, No. 2, February 1963, pp. 209–224.

    Google Scholar 

  10. Kotsovos M. D.Failure criteria for concrete under generalised stress states, Ph. D. Thesis, University of London, 1974, pp. 284.

  11. Kotsovos M. D.Effect of stress path on the behaviour of concrete under triaxial stress states, ACI Journal, Proceedings Vol. 76, No. 2, February 1979, pp. 213–223.

    Google Scholar 

  12. Kotsovos M. D.Mathematical description of the strength properties of concrete under generalised stress, Magazine of Concrete Research, Vol. 31, No. 108, September 1979, pp. 151–158.

    Article  Google Scholar 

  13. Kotsovos M. D.Fracture processes of concrete under generalised stress states, Materials and Structures, RILEM, Vol. 12, No. 72, Nov.–Décember 1979, pp. 431–437.

    Google Scholar 

  14. Kotsovos M. D.A mathematical model of the deformational behaviour of concrete under generalised stress based on fundamental material properties, Materials and Structures, RILEM, Vol. 13, No. 76, July–August 1980, pp. 289–298.

    Google Scholar 

  15. Kotsovos M. D.An analytical investigation of the behaviour of concrete under concentrations of load, Materials and Structures, RILEM, Vol. 14, No. 83, September–October 1981, pp. 341–348.

    Google Scholar 

  16. Kotsovos M. D.A generalised constitutive model of concrete based on fundamental material properties, Habilitation Thesis, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, 1981, pp. 134.

    Google Scholar 

  17. Kotsovos M. D.A fundamental explanation of the behaviour of reinforced concrete beams in flexure based on the properties of concrete under multiaxial stress, Materials and Structures, RILEM, Vol. 15, No. 90, November–December 1982, pp. 529–537.

    Google Scholar 

  18. Kotsovos M. D.Effect of testing techniques on the post-ultimate behaviour of concrete in compression, Materials and Structures, RILEM Vol. 16, No. 91, January–February 1983, pp.

  19. Kotsovos M. D., Newman J. B.Generalised stress-strain relations for concrete, Journal of the Engineering Mechanics Division, Proceedings of ASCE, Vol. 104, No. EM4, August 1978, pp. 845–856.

    Google Scholar 

  20. Kotsovos M. D., Newman J. B.Fracture mechanics and concrete behaviour, Magazine of Concrete Research, Vol. 33, No. 115, June 1981, pp. 103–112.

    Google Scholar 

  21. Kotsovos M. D., Newman J. B.Plain concrete under load— A new interpretation, IABSE Colloquium on “Advanced mechanics of reinforced concrete”, Delft 1981, IABSE report No. 34, pp. 143–158.

  22. Kotsovos M. D., Newman J. B.Effect of boundary conditions on the behaviour of concrete under concentrations of load, Magazine of Concrete Research, Vol. 33, No. 116, September 1981, pp. 161–170.

    Article  Google Scholar 

  23. Kupfer H., Hilsdorf H. K., Rusch H.Behaviour of concrete under biaxial stresses, ACI Journal, Proceedings. Vol. 66, No. 8, August 1969, pp. 655–666.

    Google Scholar 

  24. Newman J. B.Deformational behaviour, failure mechanisms and design criteria for concrete under combinations of stress, Ph. D. Thesis, University of London, 1973, pp. 583.

  25. Ottosen N. S.A failure criterion for concrete, Journal of the Engineering Mechanics Division, Proceedings of ASCE, Vol. 103, No. EM4, August 1977, pp. 527–535.

    Google Scholar 

  26. Phillips D. V., Zienkiewicz O. C.Finite element non-linear analysis of concrete structures, Proceedings of Institution of Civil Engineers, Part 2, Vol. 61, March 1976, pp. 59–88.

    Google Scholar 

  27. Saouma V. E., Ingraffea A. R.Fracture mechanics analysis of discrete cracking, IABSE Colloquium on “Advanced mechanics in reinforced concrete”, Delft 1981, IABSE report No. 34, pp. 413–436.

  28. Spooner D. C., Dougill J. W.A quantitative assessment of damage sustained in concrete during compressive loading, Magazine of Concrete Research, Vol. 27, No. 92, September 1975, pp. 151–160.

    Google Scholar 

  29. Willam K. J., Warnke E. P.Constitutive model for the triaxial behaviour of concrete, ISMES Seminar on “Concrete structures subjected to triaxial stresses”, Bergamo, Italy, May 1974, IABSE report No. 19.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kotsovos, M.D. Concrete. A brittle fracturing material. Matériaux et Constructions 17, 107–115 (1984). https://doi.org/10.1007/BF02473662

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02473662

Keywords

Navigation