Skip to main content
Log in

Chemical speciation of trace metals at the air-sea interface: The application of an equilibrium model

  • Published:
Environmental Geology

Abstract

Air-sea interfacial solutions have characteristically high concentrations of trace metals, microorganisms, organic compounds, and solids relative to bulk solutions. The potential for the chemical interaction of an array of trace metals in the interfacial regions with complexing organic ligands and adsorbing solid surfaces has been evaluated through the use of an equilibrium computer model. Computations suggest that higher interfacial accumulations of copper and lead may occur relative to cadmium and mercury. These results are found to be generally compatible with available field data describing trace metal interfacial accumulation. The forms of metals found to be partitioned between bulk and interfacial solutions are consistent with the hypothesis that solid surface adsorption and dissolved organic complexation reactions bring about metal enrichment at the surface microlayer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Anderson, D. M., and F. M. M. Morel, 1978, Copper sensitivity ofGongaulax tamarensis. Limnol. & Oceanogr., v. 23, no. 2, p. 283.

    Google Scholar 

  • Baes, C. F., Jr., 1973, The properties of cadmium, in: W. Fulkerson and H. E. Goeller, eds., Cadmium the dissipated element: Oak Ridge National Laboratory, report ORNLNSFEP-21, p. 29–60.

  • Baier, R. E., 1970, Surface quality assessment of natural bodies of water: Proc. 13th conf. Great Lakes res., International Assoc. Great Lakes Res., p. 114–127.

  • —, 1972, Organic films on natural waters: their retrieval, identification, and modes of elimination: J. Geophys. Res., v. 77, no. 27, p. 5062–5075.

    Google Scholar 

  • Barker, D. R., and H. Zeitlin, 1972, Metal-ion concentrations in sea-surface microlayer and size-separated atmospheric aerosol samples in Hawaii: J. Geophys. Res., v. 77, no. 27, pp. 5076–5086.

    Google Scholar 

  • Benjamin, M. M., 1978, Effects of competing metals and complexing ligands on trace metal adsorption at the oxide/ solution interface: PhD thesis, Stanford University, Dept. of Civil Engr.

  • Benjamin, M. M., and J. O. Leckie, 1981, Effects of complexation by Cl, SO4, and S2O3 on adsorption behavior of Cd on oxide surfaces: submitted to J. Coll. Interfacial Sci.

  • Bowden, J. W., M. D. A. Bolland, A. M. Posner, and J. P. Quirk, 1973, Generalized model for anion and cation adsorption at oxide surfaces. Nature Phys. Sci., v. 245, p. 81.

    Google Scholar 

  • Brewer, P. G., 1975, Minor elements in sea water, in: J. P. Riley and G. Skirrow, eds., Chemical oceanography, vol. 1, 2nd ed.: New York, Academic Press, p. 415.

    Google Scholar 

  • Carder, K. L., P. R. Betzer, and D. W. Eggimann, 1974, Physical, chemical, and optical measures of suspended-particle concentrations: their inter-comparisons and application to the West African shelf, in: R. J. Gibbs, ed., Suspended solids in water: New York, Plenum, p. 173.

    Google Scholar 

  • Cattell, F. C. R., and W. D. Scott, 1978, Copper in aerosol particles produced by the ocean. Science, v. 202, no. 4366, p. 429.

    Google Scholar 

  • Chave, K. E., 1970, Carbonate-organic interactions in seawater, in: D. W. Hood, ed., Symposium on organic matter in natural waters: Univ. of Alaska Inst. of Marine Sci. occasional pub. no. 1, p. 373.

  • Davis, J. A., 1977, Adsorption of trace metals and complexing ligands at the oxide/water interface: PhD thesis, Stanford University, Dept. of Civil Engr.

  • Davis, J. A., and J. O. Leckie, 1978a, Surface ionization and complexation at the oxide/water interface. I. Computation of electrical double layer properties in simple electrolytes. J. Coll. Interfacial Sci., v. 63, no. 3, p. 480.

    Article  Google Scholar 

  • —, 1978b. Effect of adsorbed complexing ligands on trace metal uptake by hydrous oxides: Environ. Sci. Tech., v. 12, no. 12, p. 1309.

    Article  Google Scholar 

  • —, 1978c, Surface ionization and complexation at the oxide/water interface. II. Surface properties of amorphous iron oxyhydroxide and adsorption of metal ions: J. Coll. Interfacial Sci., v. 67, no. 1, p. 90.

    Article  Google Scholar 

  • Duce, R. A., and E. J. Hoffman, 1976, Chemical fractionation at the air/sea interface: Annual Review of Earth and Planetary Sciences, v. 4, p. 187.

    Article  Google Scholar 

  • Duce, R. A., J. G. Quinn, C. E. Olney, S. R. Piotrowicz, B. J. Ray, and T. L. Wade, 1972, Enrichment of heavy metals and organic compounds in the surface microlayer of Narragansett Bay, Rhode Island. Science, v. 176, p. 161–163.

    Google Scholar 

  • Duce, R. A., G. L. Hoffman, B. J. Ray, I. S. Fletcher, G. T. Wallace, J. L. Fasching, S. R. Piotrowicz, P. R. Walsh, E. J. Hoffman, J. M. Miller, and J. L. Heffter, 1976, Trace metals in the marine atmosphere: sources and fluxes, in: H. L. Windom and R. A. Duce, eds. Marine pollutant transfer: Lexington, Mass. D. C. Heath, p. 77.

    Google Scholar 

  • Eggimann, D. M., and P. R. Betzer, 1976, Decomposition and analysis of refractory oceanic suspended materials: Anal. Chem., v. 48, no. 6, p. 886.

    Article  Google Scholar 

  • Elzerman, A. W., 1976, Surface microlayer-microcontaminant interactions in freshwater lakes: PhD thesis, University of Wisconsin—Madison.

  • Fitzgerald, W. F., and C. D. Hunt, 1974, Distribution of mercury in the surface microlayer and in subsurface waters of the Northwest Atlantic Ocean: J. de Recherches Atmospheriques, v. 13, p. 629.

    Google Scholar 

  • Gamble, D. S., A. W. Underdown, and C. H. Langford, 1980, Copper(II) titration of fulvic acid ligand sites with theoretical, potentiometric and spectrophotometric analysis: Anal. Chem., v. 52, p. 1901.

    Article  Google Scholar 

  • Garrett, W. D., 1965, Collection of slick forming materials from the sea surface. Limnol. & Oceanogr., v. 10, p. 602–605.

    Google Scholar 

  • —, 1967, The organic chemical composition of the ocean surface: Deep-Sea Res., v. 14, p. 221–227.

    Google Scholar 

  • Garrett, W. D., 1970, Organic chemistry of natural seasurface films, in: D. W. Hood, ed., Organic Matter in Natural Waters: Univ. of Alaska Institute of Marine Science occasional publication no. 1, p. 469.

  • Gibbs, R. J., 1974, The suspended material of the Amazon shelf and tropical Atlantic Ocean, in: R. J. Gibbs, ed, Suspended solids in water: New York: Plenum, p. 203.

    Google Scholar 

  • Goldberg, E. D., 1965, Minor elements in seawater, in: J. P. Riley and G. Skirrow, eds. Chemical oceanography, vol. 1: New York, Academic Press, p. 163.

    Google Scholar 

  • Harvey, R. W., and L. Y. Young, 1980, The enrichment and association of bacteria and particulates in the salt marsh surface water: Appl. Environ. Microbiol., v. 39, no. 4, p. 894.

    Google Scholar 

  • Hatcher, R. F., and B. C. Parker, 1974, Laboratory comparisons of four surface microlayer samplers: Limnol. & Oceanogr., v. 19, no. 1, p. 162.

    Google Scholar 

  • Hoffman, G. L., R. A. Duce, and E. J. Hoffman, 1972, Trace metals in the Hawaiian atmosphere: J. Geophys. Res., v. 77, no. 27, p. 5322.

    Google Scholar 

  • Hohl, H., and W. Stumm, 1976, Interactions of Pb2+ with hydrous gamma-alumina: J. Coll. Interfacial Sci., v. 55, p. 281.

    Article  Google Scholar 

  • Hoyt, J. W., 1970, High molecular weight algal substances in the sea: Mar. Biol., v. 7, p. 93–99.

    Article  Google Scholar 

  • Hunter, K. A., and P. S. Liss, 1977, The input of organic material to the oceans: air-sea interactions and the organic chemical composition of the sea surface: Mar. Chem., v. 5, p. 361.

    Article  Google Scholar 

  • Hunter, K. A., 1980a. Microelectrophoretic properties of natural surface-active organic matter in coastal seawater: Limnol. & Oceangr., v. 25, no. 5, p. 807.

    Google Scholar 

  • Hunter, K. A., 1980b, Processes affecting particulate trace metals in the sea surface microlayer: Mar. Chem., v. 9, no. 1, p. 49.

    Article  Google Scholar 

  • Jackson, G. A., and J. J. Morgan, 1978, Trace metal-chelator interactions and phytoplankton growth in seawater media: theoretical analysis and comparison with reported observations: Limnol. & Oceanogr., v. 23, no. 2, p. 268.

    Google Scholar 

  • James, R. O., and T. W. Healy, 1972a, Adsorption of hydrolyzable metal ions at the oxide-water interface. I. Co(II) adsorption on SiO2 and TiO2 as model systems. J. Coll. Interfacial Sci., v. 40, p. 42.

    Article  Google Scholar 

  • —, 1972b, Adsorption of hydrolyzable metal ions at the oxide-water interface. II. Charge reversal of SiO2 and TiO2 colloids by adsorbed Co(II), La(III) and Th(IV) as model systems. J. Coll. Interfacial Sci., v. 40, p. 53.

    Article  Google Scholar 

  • —, 1972c, Adsorption of hydrolyzable metal ions at the oxide-water interface. III. A thermodynamic model of adsorption. J. Coll. Interfacial Sci., v. 40, p. 65.

    Article  Google Scholar 

  • Jeffrey, L. M., 1970, Lipids of marine waters, in: D. W. Hood, ed., Symposium on organic matter in natural waters: Univ. of Alaska Inst. of Marine Sci. occasional publ. no. 1, p. 55.

  • Jensen, S., and A. Jernelov, 1969, Biological methylation of mercury in aquatic organisms: Nature, v. 223, p. 753–754.

    Article  Google Scholar 

  • Krauskopf, K. B., 1967, Introduction to geochemistry: New York, McGraw-Hill.

    Google Scholar 

  • Kubota, K., 1975, Non-foaming adsorptive bubble separation of DBS Na and foam separation of Cd: Can. J. Chem. Eng., v. 53, no. 6, p. 706.

    Google Scholar 

  • Kubota, K., and S. Hayaski, 1977, Removal of sodium, cadmium and chromium ions from dilute aqueous solutions using foam fractionation: Can. J. Chem. Eng., v. 55, p. 286–292.

    Article  Google Scholar 

  • Lal, D., 1977, The oceanic microcosm of particles: Science, v. 198, no. 4311, p. 997.

    Google Scholar 

  • Larsson, K., G. Odham, and A. Sodergren, 1974, On lipid surface films on the sea. I. A simple method for sampling and studies on composition: Mar. Chem., v. 2, p. 49.

    Article  Google Scholar 

  • Leckie, J. O., and J. A. Davis, 1979, Aqueous environmental chemistry of copper, in: J. O. Nriagu, ed., Copper in the environment, part 1, ecological cycling: New York, Wiley, p. 89.

    Google Scholar 

  • Lion, L. W., R. W. Harvey, L. Y. Young, and J. O. Leckie, 1979, Particulate matter: its association with microorganisms and trace metals in an estuarine salt marsh microlayer: Env. Sci. Tech., v. 13, no. 12, p. 1522.

    Article  Google Scholar 

  • Lion, L. W., 1980, Cadmium, copper, and lead in estuarine salt marsh microlayers: accumulation, speciation and transport: PhD thesis, Stanford University, Dept. of Civil Engr.

  • Lion, L. W., and J. O. Leckie, 1981 in press, Copper in marine microlayers: accumulation, speciation and transport, in: S. Eisenreich, ed., Atmospheric input of pollutants to natural waters: Ann Arbor, Mich., Ann Arbor Science.

    Google Scholar 

  • Liss, P. S., 1975, Chemistry of the sea surface microlayer, in: J. P. Riley and G. Skirrow, eds., Chemical oceanography, vol. 2, 2nd ed., New York, Academic Press, p. 193.

    Google Scholar 

  • MacNaughton, M. G., 1973, Adsorption of mercury (II) at the solid water interface: PhD thesis, Stanford University, Dept. of Civil Engr.

  • Mantoura, R. F. C., and J. P. Riley, 1975, The use of gel filtration in the study of metal binding by humic acids and related compounds: Anal. Chim. Acta, v. 78, p. 193–200.

    Article  Google Scholar 

  • Martin, J. H., 1970, The possible transport of trace metals via moulted copepod exoskeletons: Limnol. & Oceanogr., v. 15, p. 756.

    Google Scholar 

  • Martin, J. H., K. W. Bruland, and W. W. Broenkow, 1976, Cadmium transport in the California current, in: H. L. Windom and R. A. Duce, eds., Marine pollutant transfer: Lexington, Mass., D. C. Heath, p. 159.

    Google Scholar 

  • Morel, F., and J. Morgan, 1972, A numerical method for computing equilibria in aqueous chemical systems: Environ. Sci. Tech., v. 6, p. 58–67.

    Article  Google Scholar 

  • Morris, R. J., 1974, Lipid composition of surface films and zooplankton from the eastern Mediterranean: Marine Poll. Bull., v. 5, p. 105–108.

    Article  Google Scholar 

  • Morse, J. W., and R. A. Berner, 1972, Dissolution kinetics of calcium carbonate in sea water: II. A kinetic origin for the lysocline: Am. J. Sci., v. 272, p. 840–851.

    Article  Google Scholar 

  • Neihof, R. A., and G. I. Loeb, 1972, The surface charge of particulate matter in seawater: Limnol. & Oceanogr., v. 17, no. 1, p. 7–16.

    Google Scholar 

  • Nordstrom, D. K., L. N. Plummer, T. M. L. Wigley, T. J. Wolery, J. W. Ball, E. A. Jenne, R. L. Bassett, D. A. Crerar, T. M. Florence, B. Fritz, M. Hoffman, G. R. Holdren, Jr., G. M. Lafon, S. V. Mattigod, R. E. McDuff, F. Morel, M. M. Reddy, G. Sposito, and J. Thraikill, 1979, Comparison of computerized chemical models for equilibrium calculations in aqueous systems, in: Chemical modeling in aqueous systems, ACS symposium series 93: Washington, D.C., American Chemical Society, p. 857.

    Google Scholar 

  • Pak, H., 1974, Distribution of suspended particles in the equatorial Pacific Ocean, in: R. J. Gibbs, ed., Suspended solids in water: New York, Plenum, p. 261.

    Google Scholar 

  • Piotrowicz, S. R., B. J. Ray, G. L. Hoffman, and R. A. Duce, 1972, Trace metal enrichment in the sea-surface microlayer: J. Geophys. Res., v. 77, no. 27, p. 5243.

    Google Scholar 

  • Reimers, R. S., and P. A. Krenkel, 1974, Kinetics of mercury adsorption and desorption in sediments: J. Water Poll. Control Fed., v. 46, p. 352.

    Google Scholar 

  • Ridley, W. P., L. J. Dizikes, and J. M. Wood, 1977, Biomethylation of toxic elements in the environment: Science, v. 197, p. 329–332.

    Google Scholar 

  • Schindler, P. W., B. Furst, R. Dick, and P. U. Wolf, 1976, Ligand properties of surface silanol groups. 1. Surface complex formation with Fe3+, Cu2+, Cd2+, and Pb2+: J. Coll. Interfacial Sci., v. 55, p. 469.

    Article  Google Scholar 

  • Schnitzer, M., 1971, Metal-organic matter interactions in soils and water, in: S. D. Faust and J. V. Hunter, eds., Organic compounds in aquatic environments: New York, Marcel Dekker, p. 297.

    Google Scholar 

  • Schnitzer, M., and S. I. M. Skinner, 1966, Organo-metallic interactions in soils. 5. Stability constants of Cu++, Fe++, and Zn++-fulvic acid complexes: Soil Sci., v. 102, p. 361–365.

    Google Scholar 

  • Sieburth, J. McN., 1965, Bacteriological samplers for air-water and water-sediment interfaces, in: Ocean sciences ocean engineering: Washington, D.C., Marine Technological Society, American Society of Limnol. and Oceanogr., p. 1064.

    Google Scholar 

  • —, 1971, Distribution and activity of oceanic bacteria: Deep-Sea Res., v. 18, p. 1111–1121.

    Google Scholar 

  • Sieburth, J. McN., and A. Jensen, 1968, Studies on algal substances in the sea. I. Gelbstoff (humic material) in terrestrial and marine waters: J. Exp. Mar. Biol. Ecol., v. 2, p. 174–189.

    Article  Google Scholar 

  • —, 1969, Studies on algal substances in the sea. II. The formation of gelbstoff (humic material) by exudates of phaeophyta: J. Exp. Mar. Biol. Ecol., v. 3, p. 275–289.

    Article  Google Scholar 

  • Siegel, A., and E. T. Degens, 1966, Concentrations of dissolved amino acids from saline waters by ligand-exchange chromatography: Science, v. 151, p. 1098–1101.

    Google Scholar 

  • Sillen, L. G., and A. E. Martell, 1964, Stability constants of metal-ion complexes: London, The Chemical Society, special publication no. 17.

    Google Scholar 

  • —, 1971, Stability constants of metal-ion complexes: Supplement no. 1: London, The Chemical Society, special publication no. 25.

    Google Scholar 

  • Stuermer, D. H., and G. R. Harvey, 1974, Humic substances from seawater: Nature, v. 250, no. 5466, p. 480–481.

    Article  Google Scholar 

  • Stuermer, D. H., and J. R. Payne, 1976, Investigation of seawater and terrestrial humic substances with carbon-13 and proton nuclear magnetic resonance: Geochim. Cosmochim. Acta, v. 40, p. 1109–1114.

    Article  Google Scholar 

  • Stumm, W., and J. J. Morgan, 1970, Aquatic Chemistry: New York, Wiley.

    Google Scholar 

  • Sunda, W., and R. R. L. Guillard, 1976, The relationship between cupric ion activity and the toxicity of copper to phytoplankton: J. Mar. Res., v. 34, p. 511.

    Google Scholar 

  • Szekielda, K. H., S. I. Kupferman, V. Klemas, and D. F. Polis, 1972, Element enrichment in organic films and foam associated with aquatic frontal systems: J. Geophys. Res., v. 77, no. 27, p. 5278.

    Google Scholar 

  • Turekian, K. K., K. Amitai, and L. Chan, 1973, Trace element trapping in pteropod tests: Limnol. & Oceanogr., v. 18, no. 2, p. 240–249.

    Article  Google Scholar 

  • Wallace, G. T., and R. A. Duce, 1975, Concentration of particulate trace metals and particulate organic carbon in marine surface waters by a bubble flotation mechanism: Mar. Chem., v. 3, p. 157–181.

    Article  Google Scholar 

  • Westall, J., and H. Hohl, 1980, A comparison of electrostatic models for the oxide/solution interface: Adv. Coll. and Interfacial Sci., v. 12, p. 265.

    Article  Google Scholar 

  • White, A., P. Handler, and E. L. Smith, 1964, Principles of biochemistry, 3rd ed: New York, McGraw-Hill.

    Google Scholar 

  • Williams, P. M., 1971, The distribution and cycling of organic matter in the ocean, in: S. D. Faust and J. V. Hunter, eds., Organic compounds in aquatic environments: New York, Marcel Dekker, p. 145.

    Google Scholar 

  • Williams, R. J. P., 1953, Metal ions in biological systems: Biol. Rev., v. 28, p. 381.

    Google Scholar 

  • Wilson, W. B., and A. Collier, 1972, The production of surface-active material by marine phytoplankton cultures: J. Mar. Rev., v. 30, p. 15–26.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lion, L.W., Leckie, J.O. Chemical speciation of trace metals at the air-sea interface: The application of an equilibrium model. Geo 3, 293–314 (1981). https://doi.org/10.1007/BF02473520

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02473520

Keywords

Navigation