Abstract
The nominal tensile strength of concrete structures is constant for relatively large sizes, whereas it decreases with the size for relatively small sizes. When, as usually occurs, the experimental investigation does not exceed one order of magnitude in the scale range, a unique tangential slope in the bilogarithmic strength versus size diagram is found. On the other hand, when the scale range extends over more than one order of magnitude, a continuous transition from slope −1/2 to zero slope may appear. This means that for smaller scales a self-similar distribution of Griffith cracks is prevalent, whereas for larger scales the disorder is not visible, the size of the defects and heterogeneities being limited. In practice there may be a dimensional transition from disorder to order. The assumption of multifractality for the damaged material microstructure represents the basis for the so-called multifractal scaling law. This is a best-fit method that imposes the concavity of the bilogarithmic curve upwards, in contrast to the size effect law of Bažant. The relevant results in the literature for ranges in scale extending over more than one order of magnitude are analysed.
Resume
La résistance à la traction nominale des structures en béton est constante pour les dimensions relativement grandes, mais elle diminue en rapport avec la réduction des dimensions pour les dimensions relativement petites. Quand, comme il arrive normalement, la recherche expérimentale ne dépasse pas un ordre de grandeur dans l'intervalle d'échelle, on relève une seule pente tangentielle dans le diagramme résistance—dimensions, comme cela a déjà été observé. D'autre part, si l'intervalle d'échelle s'étend à plus d'un ordre de grandeur, il peut y avoir une transition continue d'une pente −1/2 à une pente zéro. Cela signifie que, pour des dimensions réduites, une distribution autosimilaire des fissures de Griffith est prédominante, tandis que, pour les échelles supérieures, le désordre n'est pas visible à cause des dimensions réduites des défauts et des hétérogénéités. Pratiquement, on peut mettre en évidence une transition dimensionnelle du désordre à l'ordre. L'hypothèse d'un caractère multifractal de la microstructure du matériau fissuré forme la base de la loi d'échelle multifractale (multifractal scaling law). Il s'agit d'une méthode d'interpolation (best fit) qui impose la concavité vers le haut de la courbe bilogarithmique, en contraste avec la loi sur l'effet d'échelle (size effect law) de Bažant. On examine les résultats pertinents contenus dans la littérature, qui considèrent les intervalles d'échelle comportant plus d'un ordre de grandeur.
This is a preview of subscription content, access via your institution.
References
Griffith, A. A. ‘The phenomena of rupture and flow in solids’,Phil. Trans. R. Soc. Lond. A221 (1921) 163–198.
Weibull, W., ‘A Statistical Theory of the Strength of Materials’ (Swedish Royal Institute for Engineering Research, Stockholm, 1939).
Carpinteri, A. and Ferro, G., ‘Size effect on tensile fracture properties: a unified explanation based on disorder and fractality of concrete microstructure’,Mater. Struct. 27 (1994) 563–571.
Carpinteri, A., ‘Fractal nature of material microstructure and size effects on apparent mechanical properties’,Mech. Mat. 18 (1994) 89–101.
Idem ‘Scaling laws and renormalization groups for strength and toughness of disordered materials’,Int. J. Solids Struct. 31 (1994) 291–302.
Carpinteri, A., Chiaia, B. and Ferro, G., ‘Multifractal nature of material microstructure and size effect on nominal tensile strength’, in Proceedings of IUTAM International Symposium on Fracture of Brittle Disordered Materials: Concrete, Rocks, Ceramics, 20–24 September, 1993, Brisbane, Australia, pp. 21–34.
Idem, Carpinteri, A., Chiaia, B. and Ferro, G., ‘Multifractal scaling law for nominal strength variation of concrete structures’, in Proceedings of JCI International Workshop on Size Effect in Concrete Structures, 31 October–November 2, 1993, Sendai, Japan, pp. 193–206.
Mandelbrot, B. B., ‘The Fractal Geometry of Nature’ (W. H. Freeman, New York, 1982).
Falconer, K., ‘Fractal Geometry: Mathematical Foundations and Applications’ (J. Wiley, Chichester, 1990).
Bažant, Z. P., ‘Size effect in blunt fracture: concrete, rock, metal’,J. Engng Mech. ASCE 110 (1984) 518–535.
Brühwiler, E., Broz, J. J. and Saouma, V. E., ‘Fracture model evaluation of dam concrete’,J. Mater. Civil Engng ASCE 3 (1991) 235–251.
Tang, T., Shah, S. P. and Ouyang, C., ‘Fracture mechanics and size effect of concrete in tension’,J. Struct. Engng ASCE 118 (1992) 3169–3185.
Kim, J. K., Eo, S. H. and Park, H. K., ‘Size effect in concrete structures without initial crack’, in ‘Fracture Mechanics: Application to concrete’, SP-118 (American Concrete Institute, Detroit, 1989) pp. 179–196.
Kim, J. K. and Eo, S. H., ‘Size effect in concrete specimens with dissimilar initial cracks’,Mag. Concr. Res. 42 (1990) 233–238.
Bažant, Z. P., Kazemi, M. T., Hasegawa, T. and Mazars, J., ‘Size effects in Brazilian split-cylinder tests: measurements and fracture analysis’,ACI Mater. J. 88 (1991) 325–332.
Mandelbrot, B. B., ‘Self-affine fractals and fractal dimension’,Physica Scripta 32 (1985) 257–260.
Carpinteri, A., Chiaia, B. and Maradei, F., ‘Experimental determination of the fractal dimension of disordered fracture surfaces’, in ‘Advanced Technology on Design and Fabrication of Composite Materials and Structures’ (Kluwer, Dordrecht, 1995) pp. 269–292.
Marquardt, D. W., ‘An algorithm for least-squares estimation of non-linear parameters’,J. Soc. Industr. Appl. Math. 11 (1963) 431–441.
Hasegawa, T., Shioya, T. and Okada, T., ‘Size effect on splitting tensile strength of concrete’, in Proceedings of the Japan Concrete Institute, 7th Conference, pp. 309–312.
Marti, P., ‘Size effect in double-punch tests on concrete cylinders’,ACI Mater. J. 86 (1989) 597–601.
Sabnis, G. M. and Mirza, S. M., ‘Size effect in model concretes?’,J. Struct. Divn ASCE 105 (1979) 1007–1020.
Bažant, Z. P. and Kazemi, M. T., ‘Size effect on diagonal shear failure of beams without stirrups’,ACI Struct. J. 88 (1991) 268–276.
Gettu, R., Bažant, Z. P. and Karr, M. E., ‘Fracture properties and brittleness of high-strength concrete’,ACI Mater. J. 87 (1990) 608–618.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Carpinteri, A., Chiaia, B. & Ferro, G. Size effects on nominal tensile strength of concrete structures: multifractality of material ligaments and dimensional transition from order to disorder. Materials and Structures 28, 311–317 (1995). https://doi.org/10.1007/BF02473145
Issue Date:
DOI: https://doi.org/10.1007/BF02473145