Materials and Structures

, Volume 20, Issue 2, pp 111–116 | Cite as

Microcracking of concrete under compression and its influence on tensile strength

  • A. Delibes Liners


A new parameter representing damage of concrete due to compressive stresses is investigated. Very important tensile strength losses are obtained after compressive loading over 40% of the compressive strength. Microcracking of concrete takes place under such load leading to tensile strength losses depending also on time under load, water content and type of aggregate. Under maximum compressive load a tensile strength reduction of about 50% is obtained.


Tensile Strength Compressive Strength Compressive Stress Compressive Load Pulse Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aoyama, H. and Noguchi, H., ‘Mechanical properties of concrete under load cycles idealizing seismic actions.’CEB Bull. 131 (1979).Google Scholar
  2. 2.
    Calavera, J., Gonzalez Valle, E. and Gonzale Isabel, G., ‘La influencia de los esfuerzos previos de compresion sobre la resistencia a traccion del hormigon’.Hormigón y Acero 119/120 (1977).Google Scholar
  3. 3.
    Carrasquillo, R.L. and Slate, F.O., ‘Microcracking and definition of failure of high and normal strength concretes’.Cem. Concr. Aggregates, CCAGDP,5(1) (1983).Google Scholar
  4. 4.
    Cook, D.J. and Chindaprasirt, P., ‘Influence of loading history upon the tensile properties of concrete,’.Mag. Concrete Res. 33 (116) (1981).Google Scholar
  5. 5.
    Delibes, A., ‘Estudio de la microfisuracion del hormigon sometido a cargas de compresion mediante tecnicas de ultrsonidos’.Hormigón y Acero 136 (1980).Google Scholar
  6. 6.
    Durand, A. and Durand, G., ‘Etude de la variation de la vitesse longitudinaleV L des ultrasons dans une éprouvette vette normalisée de béton soumise á des charges croissantes’.Matér. Construct. 11 (63) (1979).Google Scholar
  7. 7.
    Ferry Borges, J., ‘Structural behaviour under repeated loading’. (European Committee for Earthquate Engineering, December 1973).Google Scholar
  8. 8.
    Hsu, T.T.C., ‘Fatigue and microcracking of concrete’.Mater. Struct. 17 (97) (1984).Google Scholar
  9. 9.
    Knab, L. I., Blessing, G. V. and Clifton, J. R., ‘Laboratory evaluation of ultrasonics for crack detection in concrete’,ACI J. (Jan–Feb 1983) 17.Google Scholar
  10. 10.
    Kotsovos, M. D., ‘Concrete. A brittle fracturing material’.Mater. Struct. 17 (98) (1984).Google Scholar
  11. 11.
    Lorrain, M. and Løland, K. E. ‘Damage theory applied to concrete.’F.M. Concrete (1983).Google Scholar
  12. 12.
    Mazards, J., ‘Les fissurations des bétons.—I.2 Evolution de la microfissuration dans les bétons: formation de fissures’.Ann. ITBTP 398 (1981).Google Scholar
  13. 13.
    Neville, A.M.Properties of concrete. 3rd ed. (Pitman, 1981).Google Scholar
  14. 14.
    Shah, S. P. ‘Predictions of cumulative damage for concrete and reinforced concrete’.Mater. Struct. 17 (97) (1984).Google Scholar
  15. 15.
    Tepfers, R., ‘Fatigue of plain concrete subjected to stress reversals’. (A.C.I. Publication SP-75, 1982).Google Scholar
  16. 16.
    Wittman, F.H.,Fracture mechanics of concrete. (Elsevier, 1983).Google Scholar

Copyright information

© RILEM 1987

Authors and Affiliations

  • A. Delibes Liners
    • 1
  1. 1.Dr Ingeniero de CaminosInstituto Técnico de Materiales y Construcciones, SA (INTEMAC)Spain

Personalised recommendations