Materials and Structures

, Volume 22, Issue 1, pp 3–14 | Cite as

La durabilité au gel du béton

  • Michel Pigeon
Article

Abstract

La première partie de ce texte est un résumé des principales théories décrivant les mécanismes de détérioration du béton par le gel. Ces théories font toutes ressortir l'importance des bulles d'air et particulièrement de l'espacement entre celles-ci. On décrit ensuite l'influence de la nature des constituants (surtout des granulats) et de différents paramètres sur la tenue au gel. Une section est consacrée au concept du facteur d'espacement critique des vides d'air, c'est-à-dire la valeur limite au-delà de laquelle la détérioration par microfissuration interne peut se produire. Le phénomène de l'écaillage des surfaces dû au gel en présence de sels déglaçants fait aussi l'objet d'une section distincte, de même que la question de l'air entraîné et de tous les facteurs qui peuvent l'affecter. En dernier lieu, des résultats d'essais de chantier sont présentés.

Summary

There are two distinct manifestations of frost damage in concrete: internal microcracking and surface scaling. Although scaling is much more frequent, its mechanisms are not as well known as those of internal microcracking. It is known, however, that the use of salt is an important cause of scaling. The theories that describe the mechanisms of frost deterioration in concrete concern mostly the internal microcracking. They are summarized in the first part of this paper. These theories all point out the importance of air bubbles and their spacing for concrete durability. Thus air entrainment and the air void spacing factor are very important. The critical air void spacing factor concept (i. e. the maximum air void spacing over which frost damage occurs under given conditions) developed at Laval University is discussed. This concept allows the study of the influence of various parameters on the freeze-thaw durability: conditions of exposure, water-cement ratio, the use of certain products such as silica fume and superplasticizers, etc. A section of this article discusses the various factors that can affect the production and stability of the air void system in fresh concrete and thus the frost durability. Results of field tests are presented. The choice of aggregate is important since certain aggregates are frost-susceptible and can lead to disruption of the surrounding paste matrix. This is also discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    ASTM C666-84, ‘Standard Test Method for Resistance of Concrete to Rapid Freezing and Thawing’,Google Scholar
  2. 2.
    ASTM C672-84, ‘Standard Test Method for Scaling Resistance of Concrete Surfaces exposed to deicing Chemicals’.Google Scholar
  3. 3.
    Powers, T. C., ‘The air requirement of frost-resistant concrete,’Proc. Highway Rese. Board 29 (1949) 184–211.Google Scholar
  4. 4.
    Powers, T. C. et Helmuth, R. A., ‘Theory of volume changes in hardened Portland cement paste during freezing,’32 (1953) 285–297.Google Scholar
  5. 5.
    Powers, T. C., ‘Freezing effects in concrete’, in ‘Durability of Concrete’, Special Publication SP-47 (American Concrete Institute, 1975) pp. 1–11.Google Scholar
  6. 6.
    Litvan, G. G., ‘Freeze-thaw durability of porous building materials’, in ‘Durability of Building Materials and Components’, edited by P. J. Sereda and G. G. Litvan, Special Technical Publication STP 691 (American Society for Testing and Materials, 1978) pp. 455–463.Google Scholar
  7. 7.
    Pigeon, M., ‘Microstructure et Résistance au Gel des Ciments et Bétons,’ Thèse de docteur-ingénieur, Université Pierre et Marie Curie, Paris (1984).Google Scholar
  8. 8.
    American Concrete Institute, ‘Guide to durable concrete’,J. Amer. Concr. Inst., Proc. 74 (1977) 573–609.Google Scholar
  9. 9.
    ASTM C294-69, ‘Standard Descriptive Nomenclature of Constituents of Natural Mineral Aggregates’.Google Scholar
  10. 10.
    Maso, J. C., ‘La Nature Minéralogique des Agrégats, Facteur Essentiel de la Résistance des Bétons à la Rupture et à l'Action du Gel’, Doctorat ès-Sciences. Université de Toulouse (1969) (Revue des Matériaux de Construction, 647–648, 649) pp. 247–246 et 321–330.Google Scholar
  11. 11.
    Shuster, R. L., ‘A Study of Chert and Shale Gravel in Concrete’, PhD thesis, Purdue University (1961).Google Scholar
  12. 12.
    Walker, R. D. et Hsieh, T. C., ‘Relationship between aggregate pore characteristics and durability of concrete exposed to freezing and thawing’, in Proceedings of 47th Highway Research Board Annual Meeting (1968) pp. 41–49.Google Scholar
  13. 13.
    ASTM C457-82a, ‘Standard Test Method for Microscopical Determination of Air-Void Content and Parameters of the Air-Void System in Hardened Concrete’.Google Scholar
  14. 14.
    Lord, G. W. et Willis, T. F., ‘Calculation of Air Bubble Size Distribution from Results of a Rosiwal Traverse of Aerated Concrete’, in Bulletin No. 177 (American Society for Testing and Materials, 1951) pp. 56–61.Google Scholar
  15. 15.
    Powers, T. C., ‘Void spacing as a basis for producing air-entrained concrete,’J. Amer. Concr. Inst., Proc. 50 (1954) 741–760.Google Scholar
  16. 16.
    Pigeon, M. et Lachance, M., ‘Critical air void spacing factors for concretes submitted to slow freeze-thaw cycles,’8(4) (1981) 282–291.Google Scholar
  17. 17.
    Pigeon, M., Prevost, J. et Simard, J. M., ‘Freeze-thaw durability vs freezing rate,’J. Amer. Concr. Inst. 82(5) (1985) 684–692.Google Scholar
  18. 18.
    Gegout, P., Hornain, H., Thuret, B. et Regourd, M., ‘Résistance au gel des ciments aux fillers calcaires’, 7ième Congrès International de la Chimie des Ciments, Rio de Janeiro, Septembre 1986.Google Scholar
  19. 19.
    Pigeon, M., Pleau, R. et Aitcin, P. C., ‘Freeze-thaw durability of concrete with and without silica fume in ASTM C666 (Procedure A) test method: internal cracking versus scaling,’Cem. Concr. Aggreg. 8(2) (1986) 76–85.CrossRefGoogle Scholar
  20. 20.
    Langlois, M., ‘Influence d'un Superplastifiant sur la Résistance au Gel de Bétons Usuels et de Bétons avec Microsilice’, MSc. thesis, Laval University (1985).Google Scholar
  21. 21.
    Pigeon, M., Gagne, R. et Foy, C., ‘Critical air void spacing factors for low water-cement ratio concretes with and without condensed silica fume,’Cem. Concr. Res. 17(6) (1987) 896–906.CrossRefGoogle Scholar
  22. 22.
    Foy, C., Pigeon, M. et Banthia, N., ‘Freeze-thaw durability and deicer salt scaling resistance of a 0.25 water-cement ratio concrete’18(4) (1988) 604–614.CrossRefGoogle Scholar
  23. 23.
    Gagne, R., ‘Durabilité au Gel des Bétons à Haute Résistance, PhD. thesis, Laval University (1988).Google Scholar
  24. 24.
    Gjorv, O. E., ‘Durability of concrete containing condensed silica fume’, in Proceedings of Canmet/ACI 1st International Conference on the Use of Fly Ash, Silica Fume, Slag and Other Mineral By-products in Concrete, Special Publication SP-79 (American Concrete Institute, 1983) pp. 596–708.Google Scholar
  25. 25.
    Aitcin, P. C., ‘La technologie des bétons à très haute résistance en Amérique du Nord,’Matér. Constr. 20 (1987) 180–189.Google Scholar
  26. 26.
    Sellevold, E., Communication personnelle (1987).Google Scholar
  27. 27.
    Rosli, A. et Harnick, A. B., ‘Improving the durability of concrete to freezing and deicing salts’ in ‘Durability of Building Materials and Components,’ edited by P. J. Sereda and G. G. Litvan, Special Technical Publication STP 691 (American Society for Testing and Materials, Philadelphia, 1978) pp. 464–473.Google Scholar
  28. 28.
    Browne, F. P. et Cady, P. D., ‘Deicer scaling mechanisms in concrete’, in ‘Durability of Concrete’, Special Publication SP-47 (American Concrete Institute, 1975) pp. 101–119.Google Scholar
  29. 29.
    Verbeck, G. J. et Klieger, P., ‘Studies of “salt” scaling of concrete’,Highway Res. Board Bull. No. 150 (1957) 1–13.Google Scholar
  30. 30.
    Sommer, H., ‘The precision of the microscopical determination of the air void system in hardened concrete,’Cem. Concr. Aggreg. 1(2) (1979) 49–55.MathSciNetCrossRefGoogle Scholar
  31. 31.
    Pigeon, M., Perraton, D. et Pleau, R., ‘Scaling tests of silica fume concrete and the critical spacing factor concept’, in ‘Concrete Durability’, Proceedings of Katharine and Bryant Mather International Conference, edited by John M. Scanlon, Special Publication SP-100 (American Concrete Institute, 1987) pp. 1155–1182.Google Scholar
  32. 32.
    Beaupré, D., Perraton, D., Langlois, M. et Pigeon, M., ‘Résistance à l'Écaillage de Béton Contenant de la Fumée de Silice’, Rapport Scientifique GCI-87-03 (Ministère des Transports du Québec, 1987).Google Scholar
  33. 33.
    Whiting, D. et Stark, D., ‘Control of Air Content in Concrete’, National Cooperative Highway Research Program 258 Report (1983).Google Scholar
  34. 34.
    Backstrom, J. E., Burrows, R. W., Mielenz, R. C. et Wolkodoff, V. E., ‘Origin, evolution and effects of the air-void system in concrete’. Part 2: Influence of the type and amount of air entraining Agent,’J. Amer. Concr. Inst., Proc. 55 (1958) 261–272.Google Scholar
  35. 35.
    Idem,, ‘Origin, evolution and effects of the air-void system in concrete’. Part 3. Influence of water-cement ratio and compaction,55 (1958) 359–375.Google Scholar
  36. 36.
    Wallace, G. B. et Ore, E. L., ‘Structural and lean mass concrete as affected by water-reducing, set-retarding agents,’ in Special Technical Publication STP 266, (American Society for Testing and Materials, Philadelphia, 1959) pp. 38–96.Google Scholar
  37. 37.
    Gay, F. T., ‘The effect of mix temperature on air content and spacing factors of hardened concrete mixes with standardized additions of air entraining agent’, in Proceedings of 7th International Conference on Cement Microscopy (1985) pp. 305–315.Google Scholar
  38. 38.
    Pigeon, M., Saucier, F., et Plante, P., ‘Production et Stabilité du Réseau de Bulles d'Air Entraîné dans le Béton’. Rapport soumis au Conseil de Recherches en Sciences Naturelles et en Génie et la Compagnie Verreault-Frontenac Inc., GCI-87-01 (Université Laval, 1987).Google Scholar
  39. 39.
    Saucier, F. et Pigeon, M., ‘L'effet de certains ajouts sur le réseau de bulles d'air du béton: un problème que doit résoudre le producteur’, présenté au séminaire ‘Progrès dans le Domaine du Béton 1987’ de l'American Concrete Institute, Montréal, 1987.Google Scholar
  40. 40.
    Plante, P., Pigeon, M. Foy, C. et Pleau, R., ‘The influence of water-reducers on the production and stability of the air void system in concrete’, accepté parCem. Concr. Res. Google Scholar
  41. 41.
    Fagerlund, G., 1971, ‘Degré critique de saturation—Un outil pour l'estimation de la résistance au gel des matériaux de construction,’Matér Constr. 4(23) (1971) 2–30.Google Scholar
  42. 42.
    RILEM, ‘Estimation of the critical degree of saturation of autoclaved aerated concretes subjected to freezing,’Matér. Constr. 10(58) (1978) 212–214.Google Scholar
  43. 43.
    Pigeon, M., Aitcin, P. C. et Laplante, P., ‘Comparative study of the air-void stability in a plain and a condensed silica fume field concrete,’Amer. Concr. Inst. Mater. J. 84(3) (1987) 194–199.Google Scholar

Copyright information

© RILEM 1989

Authors and Affiliations

  • Michel Pigeon
    • 1
  1. 1.Groupe de Recherche en Technologie du Béton de l'Université Laval de QuébecCanada

Personalised recommendations