Skip to main content
Log in

Strength of cement (final report)

  • RILEM Technical Committees
  • 68-MMH: Mathematical Modelling of Cement Hydration Task Group 1
  • Published:
Materials and Structures Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Bogue, R. H. and Lerch, W., ‘Hydration of Portland cement compounds’,Ind. Engng Chem. 26(8) (1934) 837–847.

    Article  Google Scholar 

  2. Mironov, S. A. and Malinina, L. A., ‘Acceleration of Concrete Hardening’ (in Russian), (Stroiizdat, Moscow, 1964).

    Google Scholar 

  3. Butt, Yu. M., Kolbasov, V. M., and Timashev, V. V., ‘High temperature curing of concrete under atmospheric pressure’, in Proceedings of 5th ICCC, Tokyo, 1968, Vol. 3, pp. 437–471.

  4. Scharf, H., PhD thesis, Technical University Clausthal (1990).

  5. Tashiro, C., ‘The effect of several heavy metal oxides on the hydration and microstructure of hardened mortars of C3S’, in Proceedings of 7th ICCC, Paris, 1980, Vol. 2, pp. II-37–42.

  6. Odler, I. and Wonnemann, R., ‘Effect of alkalis on Portland cement hydration. I. Alkali oxides, incorporated in to the crystalline lattice of clinker minerals’,Cem. Conr. Res. 13 (1983) 477–482.

    Article  Google Scholar 

  7. Idem, ‘Effect of alkalis on Portland cement hydration. II. Alkalis present in form of sulphates,,13 (1983) 771–777.

    Article  Google Scholar 

  8. Odler, I. and Abdul-Maula, S., ‘Polymorphism and hydration of tricalcium silicate doped with ZnO’,J. Amer. Ceram.. Soc. 66 (1983) 1–4.

    Article  Google Scholar 

  9. Abdul-Maula, S. and Odler, I., ‘Structure and properties of tricalcium silicate doped with MgO, Al2O3 and Fe2O3,Br. Ceram. Proc. No. 35 (1984) 83–91.

    Google Scholar 

  10. Smith, M. A. and Gutt, W., ‘The effect of magnesium and sulphate ions on the hydraulicity of tricalcium silicate,’Cement Technol. 1 (1970) 187–191.

    Google Scholar 

  11. Odler, I. and Abdul-Maula, S., ‘Investigation on the relationship between porosity structure and strength of hydrated Portland cement pastes. III. Effect of clinker composition and gypsum addition’,Cem. Concr. Res. 17 (1987) 22–30.

    Article  Google Scholar 

  12. Kantro, D. and Weise, C. H., ‘Hydration of various betadicalcium-silicate preparations’,J. Amer. Ceram. Soc. 62 (1979) 621–626.

    Article  Google Scholar 

  13. Suzuki, K., ‘Hydration and strength of α and β-dicalcium silicates stabilized with Na−Al, K−Al, Na− and K−Fe’, in Proceedings of 7th ICCC, Paris, 1980, Vol. 2, pp. II-47-51.

  14. Fierens, P. and Tirlocq, J., ‘Nature and concentration effect of stabilizing elements of β-dicalcium silicate on its hydration rate’,Cem. Concr. Res. 13 (1983) 267–276.

    Article  Google Scholar 

  15. Haegermann, G., ‘Tagung Verein Deutscher Portland-Zement-Fabrikanten 1932’, p. 5, ref. Lee, F. W., ‘The Chemistry of Cement and Concrete’, 3rd Edn. (Chemical Publishing Co., New York, 1971) p. 83.

  16. Locher, D. and Odler, I., ‘Interaction phenomena in the combined hydration of clinker minerals,”Il Cemento 86 (1989) 25–26.

    Google Scholar 

  17. Bentur, A., ‘Intrinsic strength and microstructure of hydrated C3S’,Cem. Concr. Res. 6 (1976) 583–590.

    Article  Google Scholar 

  18. Blaine, R. L., Arni, H. T. and Defore, M. R., ‘Interrelation between cement and concrete properties’, Part 3, Section 7, ‘Compressive strengths of Portland cement test mortars and steamcured mortars’, Building Science Series 8 (NBS, 1968).

  19. Alexander, K. M., Taplin, J. H. and Wardlaw, J., ‘Correlation of strength and hydration with composition of Portland cement’, in Proceedings of 5th ICCC, Tokyo, 1968, Vol. 3, pp. 152–166.

  20. Alexander, K. M., ‘The relationship between strength and the composition and fineness of cement’,Cem. Concr. Res. 2 (1972) 663–680.

    Article  Google Scholar 

  21. Knöfel, D., ‘Modifying some properties of Portland cement clinker and portland cement by means of ZnO and ZnS’ (in German),Zement-Kalk-Gips 25 (1978) 426–431.

    Google Scholar 

  22. Schrämli, W., ‘An attempt to assess beneficial and detrimental effects of aluminate in cement on concrete performance,’World Technology 9(2,3) 1978.

  23. Osbaeck, B., ‘The influence of alkalis on the strength properties of Portland cement’ (in German),Zement-Kalk-Gips 32 (1979) 72–77.

    Google Scholar 

  24. Aldridge, L. P., ‘Estimating strength from cement composition,’ in Proceedings of 7th ICCC, Paris, 1980. Vol. 3, pp. VI-83 to VI-86.

  25. Alexander, K. M. and Ivanusec, I., ‘Long term effects of cement SO3 content on the properties of normal and high-strength concrete. Part I: the effect on strength,’Cem. Concr. Res. 12 (1982) 51–60.

    Article  Google Scholar 

  26. Egorov, G. B.et al., “Mathematical modelling of the reactivity of clinkers” (in Russian)Tsement No. 3 (1975) 18–19.

    Google Scholar 

  27. Abdul-Maula, S. and Odler, I., ‘Effect of oxidic composition on hydration and strength development of laboratory-made Portland cements’,World Cement 13 (1982) 216–222.

    Google Scholar 

  28. Jawed, I. and Skalny, J., ‘Alkalis in cement: a review. II. Effect of alkalis on hydration and performance of Portland cement’,Cem. Concr. Res.,8 (1978) 37–52.

    Article  Google Scholar 

  29. Knöfel, D., ‘Effect of alkalis on the properties of Portland cement clinker and Portland cement’ (in German),Silikattechnik 22 (1971) 262–265.

    Google Scholar 

  30. Schmitt-Henco, C., ‘Effect of clinker composition on setting and early strength of cement’ (in German),Zement-Kalk-Gips 26 (1973) 63–66.

    Google Scholar 

  31. Osbaeck, B., ‘The influence of alkalis on the strength properties of Portland cement’ (in German),Zement-Kalk-Gips 32 (1979) 72–77.

    Google Scholar 

  32. Osbaeck, B. and Joens, E. S., ‘The influence of the content and distribution of Al2O3 on the hydration properties of Portland cement’, in Proceedings of 7th ICCC, Paris, 1980, Vol. 4, pp. 514–519.

  33. Joens, E. S., ‘Continuous measurement of mortar strength at early ages—the effect of alkali and SO3’,Il Cemento 78 (2) (1981) 61–69.

    Google Scholar 

  34. Jawed, I. and Skalny, J., ‘The influence of alkali sulphates on the properties of cement and concrete’,World Cement 14 (1983) 325–330.

    Google Scholar 

  35. Strunge, J.et al., ‘Influence of alkalis and sulphur on the properties of cement’ (in German),Zement-Kalk-Gips 38 (1985) 150–158.

    Google Scholar 

  36. Gouda, G. R., ‘Microstructure and properties of high alkali clinker’, in Proceedings of 8th ICCC, Rio de Janeiro, 1986, Vol. II, pp. 234–239.

  37. Richartz, W., ‘Effect of the K2O content and degree of sulphatization on the setting and hardening of cement’ (in German),Zement-Kalk-Gips 39 (1986) 678–687.

    Google Scholar 

  38. Miyazawa, K. and Tomito, K., ‘The effect of MgO on the properties of Portland cement’ (in German),Zement-Kalk-Gips 19 (1966) 82–85.

    Google Scholar 

  39. Popovic, K. and Bejzak, A., ‘Influence of MgO on phase composition of PC-clinker and on cement properties’, in Proceedings of 7th ICCC, Paris, 1980, Vol. 4, pp. 172–176.

  40. Boikova, A. I., ‘Chemical composition of raw materials as the main factor responsible for the composition structure and properties of clinker phases’, in Proceedings of 8th ICCC, Rio de Janeiro, 1986, Vol. I, pp. 19–33.

  41. Yung, V. N., “Fundamentals of technology of binding materals’ (in Russian) (Promstroiizdat, Moscow, 1951).

    Google Scholar 

  42. Grzymek, J., ‘The importance of external form of alite crystals in producing rapid-hardening Portland cement grades’ (in German),Silikattechnik No. 6 (1955) 296–302.

    Google Scholar 

  43. Idem,, ‘Influencing the formation of alite in Portland cement clinkers’ (in German), No. 10 (1959) 81–86.

    Google Scholar 

  44. Sheikin, A. E. and Royak, S. M., ‘High strength rapid hardening cements’ (in Russian), ‘News in Chemistry and Technology of Cement’ (Stroiizdat, Moscow, 1962) pp. 93–111.

    Google Scholar 

  45. Butt, J. M., Timashev, V. V. and Stark, J., ‘Phase composition and crystal size of fast burned Portland cement clinkers’,Silikattechnik 24 (1973) 10–12.

    Google Scholar 

  46. Costa, V. and Massazza, F., ‘Influence of the burning degree on the rheological and strength properties of clinkers’, in Proceedings of 8th ICCC, Rio de Janeiro, 1986. Vol. 2, pp. 187–193.

  47. Butt, Yu. M. and Timashev, V. V., ‘Portland cement with fixed crystal structure and production of high quality cements on their basis’ (in Russian),J. All-Union Society of Chemistry D. I. Mendeleev 10(5) (1965) 551–558.

    Google Scholar 

  48. Suzukawa, Y., Kano, H. and Fukanaga, K., ‘High temperature burning of Portland cement clinker’,Gen. Meetings Cement Assoc. Japan Rev. 18 (1964) 96–99.

    Google Scholar 

  49. Locher, F. W., ‘The strength of cement’ (in German).Beton (1976), 247–286.

  50. Butt, Yu. M. and Timashev, V. V., ‘Effect of phase composition of Portland cement clinkers on the binding properties of cement’ (in Russian),Trudy Niitsementa No. 17 (1962) 85–120.

    Google Scholar 

  51. Sudakas, L. G.et al., ‘Dependence of the quality of cement on the structural peculiarities of clinker’ (in Russian),Tsement No. 2 (1975) 19–20.

    Google Scholar 

  52. Sudakas, L. G.et al., ‘Effect of burning on the crystal structure and hydraulic properties of clinkers’ (in Russian), No. 4 (1976) 17–18.

    Google Scholar 

  53. Sudakas, I. G., ‘Raising the quality of cement by improving the phase state of clinker minerals’ (in Russian), No. 7 (1977) 78.

    Google Scholar 

  54. Chatterjee, A. K., ‘Phase composition, microstructure, quality and burning of Portland cement clinkers—a review of phenomenological interrelations—Parts 1 and 2’,World Cem. Technol. 10 (1979) 124–135, 165–173.

    Google Scholar 

  55. Ono, Y., ‘Microscopical estimation of burning condition and quality of clinker’, in Proceedings of 7th ICCC, Paris, 1980, Vol. 2, pp. I-216-211.

  56. Volcovsky, B. V.et al., ‘Control of microstructure and activity of clinkers’ (in French), in Proceedings of 7th ICCC, Paris, 1980. Vol. 2, pp. I-17 to I-20.

  57. Ono, Y. and Soda, Y., ‘Effect of the crystallographic properties of alite and belite on the strength of cement,’Techn. Meetings Jap. Cem. Assoc. 17 (1965) 93–103.

    Google Scholar 

  58. Locher, F. W., ‘Influence of burning conditions on clinker characteristics’,World Cem. Technol. (1980) II 67–73.

  59. Odler, I. and Abdul-Maula, S., ‘The effect of burning conditions on the structure of Portland clinker and the reactivity of the resultant cement,’ in Proceedings of 8th ICCC, Rio de Janeiro, Vol.,III pp. 343–348.

  60. Frigione, G. and Murra, S., ‘Relationship between particle size distribution and compressive strength in Portland cement’,Cem. Concr. Res. 6 (1978) 113–128.

    Article  Google Scholar 

  61. Jelenic, I.et al., ‘Effect of gypsum on the hydration and strength development of commercial Portland cements containing alkali sulfates’,Cem. Concr. Res. 7 (1977) 239–246.

    Article  Google Scholar 

  62. Nakagawa, K., Isozaki, K. and Watanebe, Y., ‘Hydration and strength of normal Portland cement admixed with anhydrous calcium sulfate’, in Proceedings of 7th ICCC, Paris, 1980, Vol. 2, pp. II-192-197.

  63. Khalid, S. M. and Ward, M. A., ‘Effect of sulphate content of cement upon heat evolution and slump loss of concretes’,Mag. Concr. Res. 32 (1980) 28–38.

    Article  Google Scholar 

  64. Le Jean, Y., ‘Clinker grinding method and secondary compoments. Their effect upon cement reactivity and rheology’ (in French), in Proceedings of 7th ICCC, Paris, 1980, Vol. II, pp. I-252-258.

  65. Frigione, G., ‘Gypsum in cement,’ in S. N. Ghosh (ed), ‘Cement Technology’ (Pergamon, 1983) pp. 485–535.

  66. Soroka, I. and Relis, M., ‘Effect of added gypsum on compressive strength of Portland cement clinker’,J. Amer. Ceram. Soc. 62(6) (1983) 695–703.

    Google Scholar 

  67. Blombled, J. P., ‘Influence of sulfates on the rheological behaviour of cement pastes and on their evolution’, in Proceedings of 7th ICCC, Paris, 1980, Vol. 3, pp. VI-164-169.

  68. Brunauer, S.et al., ‘Hardened Portland cement pastes of low porosity’,Cem. Concr. Res. 2 (1972) 313–330.

    Article  Google Scholar 

  69. Idem,2 (1972) 33–348.

    Article  Google Scholar 

  70. Idem,2 (1972) 463–480.

    Article  Google Scholar 

  71. Idem,2 (1972) 577–584.

    Article  Google Scholar 

  72. Idem,2 (1972) 731–743.

    Article  Google Scholar 

  73. Idem,3 (1973) 129–147.

    Article  Google Scholar 

  74. Idem,3 (1973) 279–293.

    Article  Google Scholar 

  75. Odler, I.et al., ‘On the combined effect of water soluble lignosulfonates and carbonates on Portland cement and clinker pastes’,Cem. Concr. Res. 8 (1978) 469–480.

    Article  Google Scholar 

  76. Diamond, S. and Gomez-Toledo, C., ‘Consistency, setting and strength gain characteristics of a “low porosity’ Portland cement paste,’Cem. Concr. Res. 8 (1978) 613–622.

    Article  Google Scholar 

  77. Skvara, F., ‘Microstructure of hardened pastes of gypsumfree Portland and slag cements, in Proceedings 8th ICCC, Rio de Janeiro, 1986. Vol. 3, pp. 356–362.

  78. Keil, F., ‘Cement, Manufacturing and Properties’ (in German) (Springer, 1971).

  79. Lea, F. M., ‘The Chemistry of Cement and Concrete’, 3rd Edn (Chemical Publishing Co., New York, 1971).

    Google Scholar 

  80. Smolczyk, H. G., ‘Slag structure and identification of slags’, in Proceedings of 7th ICCC, Paris, 1980, I, III 1/3 to 17.

  81. Demoulian E.et al., ‘Influence of slags chemical composition and texture on their hydraulicity’ (in French), in proceedings of 7th ICCC, Paris, 1980, Vol. 2, pp. III-89-94.

  82. Sersale, R., ‘Aspects of the chemistry of additions’, in S. N. Ghosh (ed.), ‘Cement Technology’ (Pergamon, 1983) pp. 537–567.

  83. Regourd, M., ‘Characterization and activation of addition product’ (in French), in Proceedings of 8th ICCC, Rio de Janeiro, 1986, Vol. 1, pp. 199–229.

  84. Mehta, P. K., ‘Influence of fly ash characteristics on the strength of Portland-fly ash mixtures’,Cem. Concr. Res. 15 (1985) 669–674.

    Article  MathSciNet  Google Scholar 

  85. Ravina, D. and Mehta, P. K., ‘Compressive Strength of low cement/high fly ash concrete’,Cem. Concr. Res. 18 (1988) 571–583.

    Article  Google Scholar 

  86. Owens, P. L. and Buttler, F. G., ‘The reactions of fly ash and Portland cement with relation to the strength of concrete as function of time and temperature’, in Proceedings of 7th ICCC, Paris, 1980, Vol. 3, pp. IV-70-65.

  87. Locher, F. W., Sprung, S. and Korf, P., ‘The effect of particle size distribution on the strength of Portland cement’ (in German),Zement-Kalk-Gips 26 (1973) 349–355.

    Google Scholar 

  88. Knudsen, F. P., ‘Dependence of mechanical strength of brittle polycrystalline specimens on porosity and grain size’,J. Amer. Ceram. Soc. 42 (1959) 376.

    Article  Google Scholar 

  89. Osbaeck, B. and Johansen, V., ‘Particle size distribution and rate of strength development of Portland cement’,J. Amer. Ceram. Soc. 72(2) (1989) 197–201.

    Article  Google Scholar 

  90. Kuhlmann, K., Ellenbrock, H. G. and Sprung, S., ‘Particle size distribution and properties of cement I. Strength of Portland cement’ (in German),Zement-Kalk-Gips 38 (1985) 169–178.

    Google Scholar 

  91. Powers, T. C., ‘Structure and physical properties of hardened cement pastes’,J. Amer. Ceram. Soc. 41 (1958) 1–6.

    Article  Google Scholar 

  92. Helmuth, R. A. and Turk, D. H., ‘Elastic moduli of hardened Portland cement and tricalcium silicate pastes effect of porosity’,Nat. Acad. Sci. Nat. Res. Counc. Publ. (1966) 135–144.

  93. Berger, R. L., Lawrence, F. V. and Young, J. F., ‘Studies on the hydration of tricalcium silicate pastes II. Strength development and fracture characteristics’,Cem. Concr. Res. 3 (1973) 497–508.

    Article  Google Scholar 

  94. Roy, D. M., ‘Porosity-strength relation in cementitious materials with very high strengths’,J. Amer. Ceram. Soc. 56 (1973) 549–550.

    Article  Google Scholar 

  95. Toreanu, J., ‘Influence of additions of electrolytes on the development of mechanical strength of silicate binders’, (in French),Rev. Mater. Constr. No. 707 (1977) 228–230.

    Google Scholar 

  96. Rößler, and Odler, I., ‘Investigation on the relationship between porosity, structure and strength of hydrated Portland cement pastes. I. Effect of porosity. II. Effect of pore structure and of degree of hydration’,Cem. Concr. Res. 15 (1985) 320–330.

    Article  Google Scholar 

  97. Lu Ping, ‘A study of the intrinsic properties of hardened cement pastes’, in Proceedings 8th ICCC, Rio de Janeiro, 1986. Vol. 3, pp. 343–348.

  98. Grudemo, A., ‘Microcracks, fracture mechanism and strength of cement paste matrix’,Cem. Concr. Res. 9 (1979) 19–34.

    Article  Google Scholar 

  99. Osbaeck, B. and Joens, E. S., ‘The effect of cement composition on strength described by a strengthporosity model’,Cem. Concr. Res. 12 (1982) 167–178.

    Article  Google Scholar 

  100. Lawrence, C. D., ‘Porosity/strength relationship for Portland cement pastes’, in ‘Pore structure and properties of materials’, Proceedings of International Symposium, Prague, 1973, Vol. V, pp. D-167-177.

  101. Jambor, J., ‘Pore structure and strengths of hardened cement pastes’, in Proceedings of 8th ICCC, Rio de Janeiro, 1986, Vol. III, pp. 363–368.

  102. Relis, M. and Soroka, I., ‘Compressive strength of low porosity hydrated Portland cement’,J. Amer. Ceram. Soc. 63 (1980) 690–694.

    Article  Google Scholar 

  103. Satarin, V. I., ‘Slag Portland cement’, in Proceedings of 6th ICCC, Moscow, 1974-Principal paper.

  104. Soroka, J., ‘Portland Cement Paste and Concrete’ (Macmillan, London, 1979).

    Google Scholar 

  105. Taylor, H. F. W., ‘Discussion of the paper “Microstructure and strength of hydrated cements” by R. F. Feldmann and J. J. Beaudoin’,Cem. Concr. Res. 7 (1977) 465–468.

    Article  Google Scholar 

  106. Balshin, M. Y., ‘Relation of mechanical properties of powder materials and their porosity on the ultimate properties of porous metal-ceramic materials’ (in Russian),Dokl. Akad. Nauk SSSR 67 (1949) 831–836.

    Google Scholar 

  107. Brown, S. D., Biddulph, R. B. and Wilcox, P. D., ‘Strength porosity relation involving different pore geometry and orientation’,J. Amer. Ceram. Soc. 47 (1964) 320–322.

    Article  Google Scholar 

  108. Soroka, J. and Sereda, P. J., ‘Interrelation of hardness modulus of elasticity and porosity in various gypsum systems’,J. Amer. Ceram. Soc. 51 (1968), 337–340.

    Article  Google Scholar 

  109. Danyushevsky, V. S. and Djaborov, K. A., ‘Interrelation between pore structure and properties of hardened cement pastes’, in Proceedings of International Symposium, RILEM/IUPAC, Praguc, 1973, Part 3, pp. D-97-114.

  110. Fagerlund, G., ‘Strength and porosity of concrete’, in Proceedings of Symposium ‘Pore structure and properties of materials’, Prague, 1976, Vol. II, pp. D-51-73.

  111. Kozak, L. A. and Modry, S., ‘Relation between pore structure and microhardness of hardened cement paste’, in Proceedings of International Symposium, RILEM/IUPAC, Prague, 1973, Vol. V, pp. 139–148.

  112. Ryshkewitch, E., ‘Composition and strength of porous sintered alumina and zirconia’,J. Amer. Ceram. Soc. 36 (1953) 65–68.

    Article  Google Scholar 

  113. Duckworth, W., ‘Discussion of Ryshkewitchs paper’,J. Amer. Ceram. Soc. 36 (1953) 68.

    Article  Google Scholar 

  114. Beaudoin, J. J. and Feldmann, R. F., ‘A study of mechanical properties of autoclaved calcium silicate systems’,Cem. Concr. Res. 5 (1975) 111–118.

    Google Scholar 

  115. Beaudoin, J. J. and Ramachandran, V. S., ‘Strength development in magnesium oxychloride and other cements’,Cem. Concr. Res. 5 (1975) 617–630.

    Article  Google Scholar 

  116. Feldmann, R. F. and Sereda, P. J., ‘Structure and physical properties of cement pastes (written discussion)’ in Proceedings of ICCC, Tokyo, 1968, Vol. 3, pp. 36–44.

  117. Paulini, P., ‘On the effect of pore shape on strength’ (in German),Fortschrittsberichte Otsch. Keram. Geselschaft 3 (1988) 191–209.

    Google Scholar 

  118. Feldmann, R. F. and Beaudoin, J. J., ‘Micro-structure and strength of hydrated cement’,Cem. Concr. Res. 6 (1976).

  119. Ramachandran, V. S., Feldmann, R. F. and Beaudoin, J. J., ‘Cement Science: Treatise of Current Research’ (Heyden, London, 1981).

    Google Scholar 

  120. Stokes, R. J., ‘Correlation of mechanical properties with microstructure’, National Bureau of Standards Miscellaneous Publication No. 257 (1964) pp. 41–72.

  121. Mindess, S., ‘Relation between the compressive strength and porosity of autoclaved calcium silicate hydrates’,J. Amer. Ceram. Soc. 53 (1970) 621–24.

    Article  Google Scholar 

  122. Jons, E. S. and Osbaeck, B., ‘The effect of cement composition on strength described by a strength porosity model’,Cem. Concr. Res. 12 (1982) 167–178.

    Article  Google Scholar 

  123. Schiller, K. K., ‘Porosity and strength of brittle solids (with particular reference to gypsum)’, in W. H. Walton (ed.), ‘Mechanical properties of non-metallic materials’ (Butterworths, London, 1958) pp. 35–50.

    Google Scholar 

  124. Wischers, G., ‘Physical properties of cement stone’ (in German),Beton (1961) 481–486.

  125. Roy, D. M., Gouda, G. R. and Bobrowsky, A., ‘Very high strength cement pastes prepared by hot pressing and other hot pressure techniques’,Cem. Concr. Res. 2 (1972) 349–366.

    Article  Google Scholar 

  126. Jambor, J., ‘Influence of phase composition of hardened binder pastes on its pore structure and strength’, in Proceedings of Symposium, ‘Pore structure and properties of materials’, Prague, 1973, Vol. II, pp. D-75-96.

  127. Roy, D. M. and Gouda, G. R., ‘High strength generation in cement pastes’,Cem. Concr. Res. 3 (1973) 807–820.

    Article  Google Scholar 

  128. Hasselmann, D. P. H., ‘On porosity dependence of the elastic moduli of polycrystalline refractory materials’,J. Amer. Ceram. Soc. 45 (1962) 452–453.

    Article  Google Scholar 

  129. Idem, ‘Relation between effects of porosity on strength and on Young's modulus of elasticity of polycrystalline materials’,46, (1962) 564–565.

    Article  Google Scholar 

  130. Atzeni, S., ‘Effect of pore distribution on strength of hardened cement pastes’, in J. C. Maso (ed.), ‘Pore Structure and Materials Properties’, Proc. 1st International RILEM Congress, Versailles 1987.

  131. Indelicato, F., ‘On the correlation between porosity and strength in high-alumina cement mortars’,Materials and Structures 23 (1990) 289–295.

    Article  Google Scholar 

  132. Watson, K. L., ‘A simple relationship between the compressive strength and porosity of hydrated Portland cement’,Cem. Concr. Res. 11 (1981) 473–476.

    Article  Google Scholar 

  133. Feret, M.,Ann. Ponts et Chaussees (IV) No. 21 (1892) 164.

    Google Scholar 

  134. Abrams, D. A., Structural Materials Research Laboratory Bull. I. 1–22 (Reprint from Annual meeting of PCA 1918, 1–22 (1918).

  135. Bolomey, J.,Schweizerische Bauzeitung 88(2), (1926) 41–59.

    Google Scholar 

  136. Birchal, J. D., Howard, A. J. and Kendall, K., ‘New cements —inorganic plastics of the future’,Chemistry in Britain (Dec. 1982) 860–863.

  137. Eden, N. B. and Bailey, J. E., ‘On the factors affecting strength of Portland cement’,J. Mater. Sci. 19 (1984) 150–158.

    Google Scholar 

  138. Grudemo, A., ‘On the role of pore size and shape in strength-structure relationship of cement pastes’, in ‘Pore Structure and Properties of Materials’, Proceedings of International Symposium, Prague, 1973, Vol. V, pp. D-146-166.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Odler, I. Strength of cement (final report). Materials and Structures 24, 143–157 (1991). https://doi.org/10.1007/BF02472476

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02472476

Keywords

Navigation