Advertisement

Materials and Structures

, 25:157 | Cite as

The behaviour of concrete in hot climates

  • Zawde Berhane
Article

Abstract

The paper, after very briefly discussing the classification of world climates, considers hot climates before taking up a review of papers dealing with the effects of hot climates on the properties of both fresh and hardened concrete. Raw materials for concrete are discussed, where the adverse and positive effects of C3A and gypsum contents of Portland cement, thermal movement of concrete and sulphate and chloride contents of aggregate and mixing water in hot climates are pointed out. The effect of elevated temperature, ambient and initial paste temperature, ambient relative humidity, solar radiation, and water/cement ratio on the rate of Portland cement hydration and hydration product structure are discussed. The behaviours of both fresh and hardened concrete are taken up. The effect of evaporation from a fresh concrete surface on the behaviour of hardened concrete is discussed. The paper concludes that the presently published works on the properties of concrete in hot climates are fragmentary, uncoordinated and at times contradictory. It points out that systematic studies of the properties of concrete cast and continuously exposed to either hot-humid or hot-dry climates remain to be done.

Keywords

Portland Cement Hydration Product Concrete Aggregate Hardened Concrete Cement Stone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Resume

Après une rapide classification des climats dans le monde, on regarde de façon plus détaillée les climats chauds avant de passer en revue les articles traitant directement ou indirectement des effets de ces climats sur les porpriétés aussi bien du béton frais que du béton durci.

On examine les matières premières du béton (ciment, granulat, eau, adjuvants et barres de renforcement en acier), et on souligne les effets favorables et contraires du taux de C3A et de plâtre du ciment Portland, de la diffusion thermique dans le béton, des taux de sulfates et de chlorures du granulat et de l'eau de gâchage.

On discute les effets de la température élevée, température ambiante et température de la pâte initiale, de l'humidité relative, de la radiation solaire et du rapport eau/ciment sur la vitesse d'hydratation du ciment Portland, et de la structure des produits d'hydratation.

En conclusion, on constate que les travaux actuellement disponibles sur les propriétés du béton dans les climats chauds sont fragmentaires, décousus, et parfois contradictoires. Il apparaît que des études systématiques des propriétés du béton coulé sous climat chaud et exposé en permanence soit à une chaleur humide, soit à une chaleur sèche, restent à faire. On peut aussi conclure que béton et acier sont pratiquement incompatibles dans certaines régions à climat chaud. Dans de telles conditions climatiques, une des solutions les plus favorables serait d'éviter complètement d'adjonction d'acier, ou de la limiter à un taux minimal. De toute évidence, dans des conditions climatiques agressives, un béton ordinaire sera plus durable qu'un béton armé.

References

  1. 1.
    Thornthwaite, C. W., ‘The climate of the earth’,Geograph. Rev. 23 (1933) 433–440.CrossRefGoogle Scholar
  2. 2.
    Strahler, A. N., ‘Introduction to Physical Geology,’ 3rd Edn (Wiley, New York, 1973).Google Scholar
  3. 3.
    Working Party, ‘Geological society group working party: tropical residual soils’,Quart. J. Engng Geol. 23 (1) (1990) 1–101.Google Scholar
  4. 4.
    Weinert, H. H., ‘A climatic index of weathering and its application in road construction’,Geotechnique 24(4) (1974) 475–488.Google Scholar
  5. 5.
    Zawde Berhane, ‘Rigours of the humid tropics’,Buildg Res. Pract. 13(1) (1985) 52–54.Google Scholar
  6. 6.
    Idem,, ‘Performance of concrete in hot climates (a literature review)’ (MACE, Civil Engineering Department, Imperial College. London, 1990) pp. 1–96.Google Scholar
  7. 7.
    HMSO, ‘Tables of Temperatures, Relative Humidity and Precipitation for the World, Part IV: Africa, the Atlantic Ocean South of 35°N and the Indian Ocean’ (HMSO, London, 1958).Google Scholar
  8. 8.
    Soroka, I. and Jaegermann, C., ‘Deterioration and durability of concrete in hot climate’, in Proceedings of RILEM Seminar on the Durability of Concrete Structures under Normal Outdoor Exposure, Hanover, FRG, March 1984, pp. 52–60.Google Scholar
  9. 9.
    Simm, J. D. and Fookes, P. G., ‘Improving reinforced concrete durability in the Middle East during the period 1960–1985: an analytical review’,Proc. Inst. Civil Engrs Part I 86 (April 1989) 333–358.Google Scholar
  10. 10.
    Discussion of [9],ibid. 88 (February 1990) 165–178.Google Scholar
  11. 11.
    Construction Industry Research and Information Association (CIRIA), ‘The CIRIA guide to concrete construction in the Gulf region’, Special Publication 31 (CIRIA, London, 1984) pp. 1–95.Google Scholar
  12. 12.
    Rahman, A. A. and Glasser, F. P., ‘Comparative studies of the carbonation of hydrated cement’,Adv. Cement Res. 2(6) (1989) 49–54.Google Scholar
  13. 13.
    Zawde Berhane, ‘Mechanical properties of concrete in hot climates’, in Proceedings of RILEM Technical Committee TC94 CHC—Concrete in Hot Climates Meeting, Belgrade, June 1990, pp. 1–14.Google Scholar
  14. 14.
    Jensen, H. U. and Pratt, P. L., ‘The binding of chloride ions by pozzolanic products in fly ash cement blends’,Adv. Cement Res. 2(7) (1989) 121–129.Google Scholar
  15. 15.
    Bamforth, P. B., ‘Alternative cements for hot climates’,Concrete 20(2) (1986) 18–20.Google Scholar
  16. 16.
    Bureau of Reclamation, ‘Concrete Manual’, 8th Edn (1975).Google Scholar
  17. 17.
    Meyer, A., ‘Investigation on the carbonation of concrete’, in Proceedings of International Symposium on the Chemistry of Cement, Tokyo, 1968, pp. 394–401.Google Scholar
  18. 18.
    Ho, D. W. S. and Lewis, R. K., ‘Carbonation of concrete and its prediction’,Cement Concr. Res. 17(3) (1987) 489–504.CrossRefGoogle Scholar
  19. 19.
    Ravina, D. and Shalon, R., ‘Plastic shrinkage cracking’,ACI J. 65 (April 1968) 282–292.Google Scholar
  20. 20.
    Harrison, T. A. and Spooner, D. C., ‘The properties and use of concrete made with composite cements’,C & CA Interim Technical Report 10 (1986) pp. 1–28.Google Scholar
  21. 21.
    Working Party, ‘Non-structural Cracks in Concrete’, Report of a Concrete Society Working Party (The Concrete Society, London, 1986) pp. 1–38.Google Scholar
  22. 22.
    Neville, A. M., ‘Properties of Concrete’, 3rd Edn (Pitman, London, 1981) pp. 491–498.Google Scholar
  23. 23.
    Browne, D. R., ‘Thermal movement in concrete’,Concrete 6(11) (1972) 51–53.Google Scholar
  24. 24.
    Rhodes, R. and Mielenz, R. C., ‘Petrography of concrete aggregates’,ACI J. 42 (June 1946) 581–600.Google Scholar
  25. 25.
    Building Research Station, ‘Analysis of water encountered in construction’, Digest No. 90 (HMSO, London, 1956).Google Scholar
  26. 26.
    Abrams, D. A., ‘Tests of impure water for mixing water’,ACI J. 20 (1924) 442–486.Google Scholar
  27. 27.
    Lea, F. M., ‘The Chemistry of Cement and Concrete’, 2nd Edn (Arnold, London, 1970).Google Scholar
  28. 28.
    Buenfeld, N. R. and Newman, J. B., ‘The permeability of concrete in a marine environment’,Mag. Concr. Res. 36(127) (1984) 67–80.CrossRefGoogle Scholar
  29. 29.
    Ravina, D., ‘Retempering of prolonged-mixed concrete with admixtures in hot weather’,ACI J. 72(6) (1975) 291–295.Google Scholar
  30. 30.
    Samarai, M. A., Popovics, S. and Malhotra, V. M., ‘Effect of retempering with superplasticizer on the properties of fresh and hardened concrete mixed at higher ambient temperature’, in ‘Superplasticizers and Other Chemical Admixtures’, ACI Symposium, Ottawa, Canada, 1989, ACI SP119.Google Scholar
  31. 31.
    Copeland, L. E., Kantro, D. L. and Verbeck J. G., ‘Chemistry of hydration of Portland cement’, in Proceedings of International Symposium on the Chemistry of Cement, Washington, DC, 1960, Vol. I, pp. 429–465.Google Scholar
  32. 32.
    Verbeck, J. G. and Copeland, L. E., ‘Some physical and chemical aspects of high pressure steam curing’, in Proceedings of Menzel Symposium on High Pressure Steam Curing, Detroit, 1972, ACI SP-32, pp. 1–13.Google Scholar
  33. 33.
    Richartz, W., ‘Electron microscope investigation of hardened cement paste’, in Proceedings of International Symposium on the Chemistry of Cement, Tokyo, October 1968, Part III, pp. 119–128.Google Scholar
  34. 34.
    Chapman, D. A., ‘A study of the movement of moisture in and from concrete at elevated and non-uniform temperatures’, PhD thesis, University of London (1976) pp. 479–483.Google Scholar
  35. 35.
    Ludwig, N. C. and Pence, S. A., ‘Properties of Portland cement pastes cured at elevated temperature-pressure’,ACI J. 52(6) (1956) 673–764.Google Scholar
  36. 36.
    Idorn, G. M., ‘Hydration of Portland cement paste at high temperatures under atmospheric pressure’, in Proceedings of International Symposium on the Chemistry of Cement, Tokyo, October 1968, Part III, pp. 411–428.Google Scholar
  37. 37.
    Powers, T. C., ‘A discussion of cement hydration in relation to curing of concrete’,Proc. Highway Res. Bd, Washington DC (1947) 178–188.Google Scholar
  38. 38.
    Patel, R. G., Killoh, D. C., Parrott, L. J. and Gutteridge, W. A., ‘Influence of curing at different humidities upon compounds reactions and porosity in Portland cement paste’,Mater. Struct. 21 (123) (1988) 192–197.CrossRefGoogle Scholar
  39. 39.
    Danielsson, U., ‘Heat of hydration of cement as effected by water-cement ratio’, in Proceedings of International Symposium on the Chemistry of Cement, Washington, DC, Vol I (1960) pp. 519–525.Google Scholar
  40. 40.
    Taplin, J. H., ‘A method for following the hydration of Portland cement paste’,Aust. J. Appl. Sci. 10(3) (1959) 329–345.Google Scholar
  41. 41.
    Zawde Berhane, ‘Evaporation of water from fresh mortar and concrete at different environmental conditions’,ACI J. 81(6) (1984) 560–565.Google Scholar
  42. 42.
    Lerch, W., ‘Plastic shrinkage’,ibid. 53 (February 1957) 797–802.Google Scholar

Copyright information

© RILEM 1992

Authors and Affiliations

  • Zawde Berhane
    • 1
  1. 1.Department of Civil EngineeringAddis Ababa UniversityAddis AbabaEthiopia

Personalised recommendations