Advertisement

Materials and Structures

, Volume 19, Issue 3, pp 190–200 | Cite as

Multiaxial strain-softening of concrete

Part II: Load-histories
  • Jan G. M. van Mier
Article

Abstract

The paper describes the behaviour of concrete specimens (cubes, d=100mm) subjected to multiaxial cyclic and rotation load paths. The specimens were loaded in a recently developed multiaxial apparatus which was described shortly in Part I. A cyclic load path corresponds to a series of loading-unloading cycles to the envelope curve, for which the major compressive stress-strain curve was used for defining the unloading conditions. The rotation paths implied a simple exchange of major and minor compressive stress, after some damage was sustained to a specimen. The observed stress-strain behaviour of the different loading paths was discussed in relation to the “final structure” of a specimen subjected to multiaxial compression. The “final structure” consists of a number of more or less intact rest pieces, separated by localised shear zones. The movement of the blocks with respect to each other and into the shear localisations seems to determine the complete observed response. By using cyclic and rotation load paths, the geometry and frictional characteristics of the shear fractures may be determined.

Keywords

Shear Band Load Cycle Envelope Curve Rotation Test Localise Shear Band 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Résumé

On décrit le comportement d’éprouvettes de béton (cubes,d=100 mm) soumises à des modes de chargement pluriaxials cycliques et en rotation. L’équipement utilisé est celui décrit dans la première partie. Ce chargement cyclique se traduit par une série de cycles de chargement/déchargement à la limite élastique (courbe intrinsèque), les conditions de déchargement ayant été définies à l’aide de la composante majeure de contrainte/déformation en compression. La rotation implique un simple passage de l’une à l’autre des composantes majeure et mineure après un certain endommagement de l’éprouvette. on a considéré le comportement contrainte/déformation suivant les différents modes de chargement en relation avec la ‘structure finale’ d’une éprouvette chargée en compression pluriaxiale. La “structure finale” consiste en un certain nombre de “blocs” séparés par des zones de cisaillement localisé. Ce sont les mouvements de ces ‘blocs” les uns par rapport aux autres et leur pénétration dans les zones de cisaillement qui semblent déterminer la réponse complète fournie par l’observation. Au moyen des modes de chargement, cycles et rotations, les caractéristiques géométriques et tribologiques des fractures par cisaillement peuvent être déterminées.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Mier J.G.M. van.Multiaxial strain-softening of concrete. Part I: fracture, Materials and structures, RILEM, Vol. 19, No. 111, 1986.Google Scholar
  2. [2]
    Mier J.G.M. van.Strain-softening of concrete under multiaxial loading conditions, PhD thesis, Eindhoven University of technology, The Netherlands, 1984, pp. 349.Google Scholar
  3. [3]
    Spooner D.C., Pomeroy C.D., Dougill J.W.Damage and energy dissipation in cement pastes in compression, Magazine of Concrete Research, Vol. 28, No. 94, March 1976, pp. 21–29.CrossRefGoogle Scholar
  4. [4]
    Spooner D.C., Dougill J.W.A quantitative assessment of damage sustained in concrete during compressive loading, Magazine of Concrete Research, Vol. 27, No. 92, Sept. 1975, pp. 151–160.Google Scholar
  5. [5]
    Dougill J.W., Rida M.A.M.Further consideration of progressively fracturing solids, Journal of the Engineering Mechanics Division, Proc. ASCE, Vol. 106, EM5, Oct. 1980, pp. 1021–1038.Google Scholar
  6. [6]
    Mazars J.Description du comportement multiaxial du béton par un modèle de matériau élastique endommageable, RILEM-CEB Symposium on “Concrete under Multiaxial Conditions,” INSA, Toulouse, Vol. 1, 1984, pp. 190–200.Google Scholar
  7. [7]
    Krajcinovic D., Fonseka G.K.The continuous damage theory of brittle materials, part 1:General Theory, Journal of Applied Mechanics, Trans. ASME, Vol. 48, Dec. 1981, pp. 809–815.MATHCrossRefGoogle Scholar
  8. [8]
    Dougill J.W.Constitutive relations for concrete and rock: applications and extensions of elasticity and plasticity theory, Preprints, William Prager Symposium on “Mechanics of Geomaterials: Rocks, Concretes, Soils,” Bazant Z.P. ed., Northwestern University, Evanston, (Ill.) 1983, pp. 17–54.Google Scholar
  9. [9]
    Krajcinovic D.,Mechanics of solids with a progressively deteriorating structure, NATO Advanced Research Workshop, “Application of fracture mechanics to cementitious composites”, Northwestern University, Evanston (Ill.), Sept. 1984, Shah S.P. ed., pp. 323–348.Google Scholar
  10. [10]
    Karsan I.D., Jirsa J.O.Behavior of concrete under compressive loadings, Journal of the Structural Division, Proc. ASCE, Vol. 95, No. ST12, Dec. 1969, pp. 2543–2563.Google Scholar
  11. [11]
    Maher A., Darwin D.Mortar constituent of concrete in compression, ACI-Journal, March–April 1982, pp. 100–109.Google Scholar
  12. [12]
    Sinha B.P., Gerstle K.H., Tulin L.G.Stress-strain relations for concrete under cyclic loading, ACI Journal, Vol. 61, Febr. 1964, pp. 195–210.Google Scholar
  13. [13]
    Buyukozturk O., Tseng T.M.Concrete in biaxial cyclic compression, Journal of Structural Engineering, Proc. ASCE, Vol. 110, No. 3, March 1984, pp. 461–476.CrossRefGoogle Scholar
  14. [14]
    Jamet P., Millard A., Nahas G.Triaxial behaviour of a micro-concrete complete stress-strain curves for confining pressures ranging from 0to 100MPa, RILEM-CEB Symposium on “Concrete under multiaxial conditions,” INSA Toulouse, 1984, Vol. 1, pp. 133–140.Google Scholar
  15. [15]
    Reinhardt H.W., Cornelissen H.A.W.Post-peak cyclic behaviour of concrete in uniaxial tensile and alternating tensile and compressive loading, Cement and Concrete Research, Vol. 14, No. 2, 1984, pp. 263–270.CrossRefGoogle Scholar
  16. [16]
    Mier J.G.M. Van.Influence of damage orientation distribution on the multiaxial stress-strain behaviour of concrete, Cement and Concrete Research, Vol. 15, No. 5, 1985, pp. 849–862.CrossRefGoogle Scholar
  17. [17]
    Suaris W., Shah S.P.Constitutive model for dynamic loading of concrete, Journal of Structural Engineering, Vol. 111, No. 3, March 1985, pp. 563–576.Google Scholar

Copyright information

© Bordas-Gauthier-Villars 1986

Authors and Affiliations

  • Jan G. M. van Mier
    • 1
    • 2
  1. 1.TNO Institute for Building Materials and StructuresDelftThe Netherlands
  2. 2.Eindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations