Skip to main content
Log in

Etude expérimentale sur le comportement statique et dynamique à grande vitesse de déformation des microbétons

  • Published:
Materials and Structures Aims and scope Submit manuscript

Résumé

Cette étude contribue à la compréhension du comportement des microbétons non-armés ou armés de fibres en compression dynamique. Les deux types de microbétons sont testés dans une gamme de vitesse de déformation de 0,0001 à 800 s−1. Ils présentent une sensibilité très importante à la vitesse de déformation, notamment pour le microbéton de fibres d'acier. Les résultats sont obtenus à l'aide du dispositif des barres de Hopkinson (essais dynamiques), et au moyen d'une machine hydraulique MTS pour les essais quasi-statiques.

Summary

This study contributes to the comprehension of the dynamic behaviour of plain (MB) and steel-fibre reinforced (MBF) micro-concrete. These two materials have been deformed under compression loading over a large strain-rate range from 0.0001 to 800 s−1; the dynamic testing is done by the split-Hopkinson pressure bar method and the intermediate rate tests performed on an MTS hydraulic testing machine. Results show that these two microconcretes are strongly sensitive to strain rate: in the high strain-rate range between 100 and 800 s−1, the resistance of these two materials is increased by about 75%. At the same time, the values of deformation are measured from 0.002 to 0.0045 for MB and from 0.005 to 0.0066 for MBF.

From optical microscope observations of the microstructure, it is found that the cracks traverse through the granules and the matrix of cement, and many granules are broken in the case of dynamic loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Zielinski, A. J., ‘Fracture of Concrete and Mortar under Uniaxial Impact Tensile Loading’ (Delft University Press, 1982).

  2. Watstein, D., ‘Effect of straining rate on the compressive strength and elastic properties of concrete’,ACI J. (Avril 1953) 729–744.

  3. Suaris, W. and Shah, S. P., ‘Properties of concrete subjected to impact’,J. Struct. Engng, ASCE,109 (7) (1983).

  4. Gorisse, F., ‘Etude des microbétons pour modèle de structures’,Ann. ITBTP No291 (Mars 1972).

  5. Kumer, S., Beak, M. and Dupuh, G., ‘Scaling and construction problem in tests, micro-concrete models’,Concrete (Nov. 1980).

  6. Dreux, G., ‘Nouveau guide du béton’ (Eyrol, 1979).

  7. Kavyrchine, M., ‘Etudes structurales en microbéton’,Ann. ITBTR (No389) (1980).

  8. Chiem, C. Y., ‘Etude comparative entre les comportements statique et dynamique des matériaux. Effet du sant de vitesse de déformation’, thèse Docteur-ès-Science, ENSM, Nantes (1980).

    Google Scholar 

  9. Lindholm, U. S., ‘Some experiments with the split Hopkinson pressure bar’,J. Mech. Phys. of Solids 12 (5) (1964) 317–335.

    Article  Google Scholar 

  10. Lindholm, U. S., Yeakly, L. M. and Nagy, ‘The dynamic strength and fracture properties of Dresser Basalt’,Int. J. Rock. Mech. Min. Sci. Geomech. Abstr. 11 (1974) 181–191.

    Article  Google Scholar 

  11. Klepczko, J. R., ‘Application of the split Hopkinson pressure bar for dynamic loading of rock’,Engng Trans. 28 (3) (1980), 381–399.

    Google Scholar 

  12. Boutemeur, R. ‘Etude de la sensibilité du mortier sollicité en compression à la vitesse de déformation’, thèse, ENSM, Nantes (1985).

    Google Scholar 

  13. Zielinski, A. J. and Reinhardt, H. W., ‘Stress-strain behaviour of concrete and mortar at high rates of tensile loading’,Cement Concr. Res. 12 (1982) 309–319.

    Article  Google Scholar 

  14. Zielinski, A. J., Reinhardt, H. W. and Körmeling, H. A., ‘Experiments on concrete under repeated uniaxial impact tensile loading’,Matér. Constru. 14 (80) (1981).

  15. Lie, Z. G., ‘Comportement et modélisation des matériaux composites CARBONE/EPOXYDE en cisaillement à grande vitesse’, thèse, ENSM, Nantes (1987).

    Google Scholar 

  16. Suaris, W. and Shah, S. P., ‘Rate-sensitivity damage theory for brittle solids’,J. Engng Mech., ASCE 110 (6) (1984).

  17. Krajcinovic, D. and Fonseka, G. U., ‘The continuous damage theory of brittle materials’, part 1 et 2, vol. 48,J. Appl. Mech. 48 (1/2) (1981) 809–824.

    Article  MATH  Google Scholar 

  18. Grady, D. E. and Kipp, M. E., ‘Continuum modelling of explosive fracture in oil shale’,Int. J. Rock. Mech. Min. Sci. Geomech. Abstr. 17 (1980) 147–157.

    Article  Google Scholar 

  19. Idem, ibid. 16 (1979), 293–302.

    Article  Google Scholar 

  20. Kipp, M. E., Grady D. E. and Chen, E. P., ‘Strain-rate dependent fracture initiation’,Int. J. Fract. 16 (5) (1980) 471–478.

    Article  Google Scholar 

  21. Green, A., ‘The impact testing of concrete’, in Proceedings of Conference on the Mechanical Properties of Non-metallic Brittle Materials, London, 1958, pp. 300–315.

  22. Kolsky, H., ‘An investigation of the mechanical properties of materials at very high rates of loading’,Proc. Phys. Soc. (1964).

  23. Idem, ‘Stress Waves in Solids’ (Dover, New York, 1953).

    MATH  Google Scholar 

  24. Hwaija, B., ‘Modélisation des microbétons’, Rapport de recherche, Laboratoire des matériaux, ENSM, Nantes (1989).

    Google Scholar 

  25. Hughes, B. P. and Watson, A. J., ‘Compressive strength and ultimate strain of concrete under impact loading’,Mag. Concr. Res. 30 (105) (1978) 189–197.

    Article  Google Scholar 

  26. Dhir, R. K. and Sangha, C. M., ‘Development and propagation of micro-cracks in plain concrete’,Matér. Constr. 7 (37) (1974) 17–23.

    Google Scholar 

  27. Limberger, E., Brandes, K. and Herter, J., in Proceedings, RILEM-CEB-IABSE-IASS Interassociation Symposium, ‘Concrete Structures under Impact and Impulsive Loading’, Berlin (west), June 1982.

  28. Atchey, B. L. and Furr, H. L., ‘Strength and energy absorption capabilities of plain concrete under dynamic and static loading’,ACI J. (Nov. 1967) 745–756.

  29. Muria Vila, D., ‘Contribution à l'étude du comportement au choc des bétons’, thèse, INSA, Lyon (1986).

    Google Scholar 

  30. Soroushian, P. and Obascki, K., ‘Strain rate-dependent interaction diagrammes for reinforced concrete section’,ACI J. 83 (1) (1986) 108–116.

    Google Scholar 

  31. Soroushian, P., Choi, K. B. and Alhamad, A., ‘Dynamic constitutive behavior of concrete’,ibid. 83 (26) (1986) 251–259.

    Google Scholar 

  32. Dilger, W. H., Koch, R. and Kowalczyk, R., ‘Ductility of plain and confined concrete under different strain rates’,ibid. 81 (1) (1984) 73–81.

    Google Scholar 

  33. Hughes, B. P. and Gregory, R., ‘Concrete subjected to high rates of loading in compression’,Mag. Concr. Res. 24 (78) (1972) 25–36.

    Google Scholar 

  34. Maso, J. C., ‘L'étude expérimentale du comportement du béton sous sollicitations monoaxiales et pluriaxialess’, dans ‘Le béton hydraulique’ (Presses de l'ENPC, Paris, 1982) pp. 275–292.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiem, C.Y., Sieffert, J.G. & Hwaija, B.H. Etude expérimentale sur le comportement statique et dynamique à grande vitesse de déformation des microbétons. Materials and Structures 23, 426–435 (1990). https://doi.org/10.1007/BF02472025

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02472025

Navigation