Skip to main content
Log in

Possible molecular-cellular mechanisms of the regulation of gene expression during learning

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

This study is an analysis of the regulatory mechanisms of plasticity. The first part provides a short review of the role of DNA-binding transcription factors in possible regulatory pathways and their activity in the mechanisms of plasticity. Our own data obtained in studies of the molecular mechanisms underlying the formation of conditioned defensive reflexes inHelix are then presented. These studies show that formation of defensive types of plasticity inHelix is accompanied by serotonin-induced translocation of a protein with Rf 0.58 and increases in G-protein activity, protein kinase A activity, and expression of the c-fos gene. Transcription factors CRE and AP-1 probably have roles in the learning process. Gel shift assays demonstrated the existence of transcription factors of the CRE and AP-1 families in adult snails. In juvenile snails, which were unable to form defensive types of plasticity, the serotonin protein with Rf 0.58 (the learning “marker”) was absent from and was not induced in the CNS. Gel shift assay results also showed that transcription factors of the AP-1 family were not present and were not induced by serotonin or the protein kinase A activator forskolin, though these snails had significant levels of CRE transcription factors. Serotonin and forskolin increased the DNA-binding activity of CRE in juvenileHelix. The lack of activity of transcription factors of the AP-1 family in juvenile snails may explain their inability to development sensitization and conditioned defensive reflexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. V. Anokhin, “Molecular scenarios of the consolidation of long-term memory,”Zh. Vyssh. Nerv. Deyat. 47, No. 2, 261–279 (1997).

    CAS  Google Scholar 

  2. P. N. Balaban and I. S. Zakharov,Learning and Development—A Common Basis for Two Functions [in Russian], Nauka, Moscow (1992).

    Google Scholar 

  3. L. N. Grinkevich, “Protein metabolism in the formation of a defensive reflex in mollusks,”Zh. Vyssh. Nerv. Deyat.,42, No. 6, 1221–1229 (1992).

    CAS  Google Scholar 

  4. L. N. Grinkevich, “Microchemical studies of the protein spectra of command neurons for a conditioned defensive reflex in the common snail,”Dokl. Akad. Nauk SSSR,259, No. 1, 248–250 (1980).

    Google Scholar 

  5. L. N. Grinkevich, “Dynamics of [3H]-leucine uptake into common snail CNS proteins during learning,”Neirokhimiya,8, No. 1, 56–63 (1989).

    CAS  Google Scholar 

  6. L. N. Grinkevich, P. D. Lisachev, and M. B. Shtark “Neurochemical correlates of plasticity,”Zh. Vyssh. Nerv. Deyat.,43, No. 5, 963–968 (1993).

    CAS  Google Scholar 

  7. L. N. Grinkevich, L. B. Toporkova, P. D. Lisachev, and N. L. Izvarina, “The role of G-proteins and second messenger systems in the plasticity of a defensive reflex in the common snail,”Zh. Vyssh. Nerv. Deyat.,46, No. 5, 886–892 (1996).

    CAS  Google Scholar 

  8. L. N. Grinkevich, I. N. Nagibieva, and P. D. Lisachev, “A conditioned defensive reflex in the common snai (molecular-genetic aspects),”Ros. Fiziol. Zh. im. I. M. Sechenova,81, No. 8, 24–28 (1995).

    CAS  Google Scholar 

  9. L. N. Grinkevich and P. D. Lisachev, “Desensitization of a response to serotonin in the common snail brain during learning,”Proceedings of the Third Siberian Physiology Congress [in Russian] (1997), p. 48.

  10. A. Yu. Malyshev, N. I. Bravarenko, A. S. Pivovarov, and P. M. Balaban, “The effects of serotonin levels on postsynaptic induced potentiation of snail neuron responses,”Zh. Vyssh. Nerv. Deyat.,47, No. 3, 553–562 (1997).

    CAS  Google Scholar 

  11. A. V. Shevelkin, V. P. Nikitin, and S. A. Kozyrev, “Serotonin imitates several of the neuronal effects of nociceptive sensitization in the common snail,”Zh. Vyssh. Nerv. Deyat.,47, No. 3, 532–542 (1997).

    CAS  Google Scholar 

  12. T. Abrams, A. K. Kevin, and E. R. Kandel, “Biochemical studies of stimulus convergence during classical conditioning inAplysia: dua regulation of adenylate cyclase by Ca2+/calmodulin and transmitter,”J. Neurosci.,11, No. 9, 2655–2665 (1991).

    PubMed  CAS  Google Scholar 

  13. C. M. Alberini, M. Ghirardi, R. Metz, and E. R. Kandel, “CEBP is an immediate-early gene required for the consolidation of long-term facilitation inAplysia,”Cell,76, No. 6, 1099–1114 (1994).

    Article  PubMed  CAS  Google Scholar 

  14. P. Angel and M. Karin, “The role of Jun, Fos, and AP-1 complex in cell proliferation and transformation,”Biochem. Biophys. Acta,1072, No. 1, 129–157 (1991).

    PubMed  CAS  Google Scholar 

  15. R. C. Armstrong and M. R. Montminy, “Transsynaptic control of gene expression,”Ann. Rev. Neurosci.,16, No. 1, 17–29 (1993).

    Article  PubMed  CAS  Google Scholar 

  16. B. J. Bacskai, B. Hochner, M. Mahaut-Smith, R. Adams, B.-K. Kaang, E. R. Kandel, and R. Y. Tsien, “Spatially resolved dynamics of cAMP and protein kinase A subunits inAplysia sensory neurons,”Science,260, No. 1, 222–226 (1993).

    PubMed  CAS  Google Scholar 

  17. C. H. Bailey, B. K. Kaang, and M. Chen, “Mutation in the phosphorylation sites of Map kinase blocks learning-related internalization of CAM inAplysia sensory neurons,”Neuron,18, No. 6, 913–924 (1997).

    Article  PubMed  CAS  Google Scholar 

  18. D. Bartsh, M. Ghirardi, and P. A. Skehal, “Aplysia CREB 2 repression converts transient facilitation into long-term functional and strutural change,”Cell,83, No. 2, 979–992 (1995).

    Article  Google Scholar 

  19. R. Bourtchuladze, B. Frenquelli, J. Blendy, D. Cioffi, G. Schultz, and A. L. Silva, “Deficient long-term memory I mice with a targeted mutation in the cAMP-responsive element-binding protein,”Cell,79, No. 1, 59–68 (1994).

    Article  PubMed  CAS  Google Scholar 

  20. O. Braha, B. Edmonds, T. Sacktor, E. R. Kandel, and M. Klein, “The contributions of protein kinase C to the actions of 5-HT on the L-type Ca2+ current of the sensory neurons inAplysia,”J. Neurosci.,13, No. 5, 1839–1851 (1993).

    PubMed  CAS  Google Scholar 

  21. B. A. Christy, L. F. Lau, and D. Nathans, “A gene activated in mouse 3T3 cells by serum growth factors encodes a protein with “zinc finger” sequences,”Proc. Natl. Acad. Sci. USA,85, No. 6, 7857–7861 (1988).

    Article  PubMed  CAS  Google Scholar 

  22. D. M. F. Cooper, N. Mons, and J. W. Karpen, “Adenylyl cyclases and the interaction between calcium and cAMP signaling,”Nature,374, 421–424 (1995).

    Article  PubMed  CAS  Google Scholar 

  23. T. Curran and B. R. Franza, “Fos and Jun: the AP-1 connection,”Cell,55, 395–397 (1988).

    Article  PubMed  CAS  Google Scholar 

  24. P. K. Dash, K. A. Karl, M. A. Colicos, P. Prywes, and E. R. Kandel, “cAMP response element-binding protein is activated by Ca2+/calmodulin as well as cAMP-dependent protein kinase,”Proc. Natl. Acad. Sci. USA 88, No. 6, 5061–5065 (1991).

    Article  PubMed  CAS  Google Scholar 

  25. I. Demmer, M. Dragunow, P. A. Lawlor, C. E. Mason, J. D. Leah, W. C. Abram, and W. P. Tate, “Differential exposure of immediate early genes after hippocampal long-term potentiation in awake rats,”Mol. Brain Res.,17, No. 3-4, 279–286 (1993).

    Article  PubMed  CAS  Google Scholar 

  26. R. D. Fields, F. Eshete, B. Stevens, and K. Itoh, “Action potential-dependent regulation of gene expression: temporal specificity in Ca2+, cAMP-responsive element binding proteins, and mitogen-activated protein kinase signaling,”J. Neurosci.,17, No. 19, 7252–7266 (1997).

    PubMed  CAS  Google Scholar 

  27. S. M. Greenberg, V. E. Castelluci, H. E. Bailey, and J. H. Schwartz, “A molecular mechanism for long-term sensitization inAplysia,”Nature,329, 62–65 (1987).

    Article  PubMed  CAS  Google Scholar 

  28. M. E. Greenberg, Z. Siegfried, and E. B. Ziff, “Mutation of the c-fos gen dyad symmetry element inhibits serum inducibility of transcription in vivo and the nuclear regulatory factor binding in vitro,”Mol. Cell Biol.,7, 1217–1225 (1987).

    PubMed  CAS  Google Scholar 

  29. A. N. Hegde, K. Inokuchi, W. Pei, and A. Casadio, “Ubiquitin c-terminal hydrolase is an immediate-early gene essential for long-term facilitation inAplysia,”Cell,89, 115–126 (1997).

    Article  PubMed  CAS  Google Scholar 

  30. Y. Hu, A. Barzilai, M. Chen, C. H. Bailey, and E. R. Kandel, “5-HT and cAMP induce the formation of coated pits and vesicles and increase the expression of clathrin light chain in sensory neurons ofAplysia,”Neuron,10 921–929 (1993).

    Article  PubMed  CAS  Google Scholar 

  31. Y. Y. Huang, X.-Ch. Li, and E. R. Kandel, “cAMP-contributes to mossy fiber LTP by initiating both a covalently mediated early phase and macromolecular synthesis-dependent late phase,”Cell,79, 69–79 (1994).

    Article  PubMed  CAS  Google Scholar 

  32. G. Jonat, H. I. Kahmsdorf, K.-K. Part, C. B. Cato, H. Ponta, and P. Herrlich, “Antitumor promotion and antiinflammation. Down-modulation of API (Fos/Jun) activity by glucocortical hormone,”Cell,62, 1189–1195 (1990).

    Article  PubMed  CAS  Google Scholar 

  33. B.-K. Kaang, E. R. Kandel, and C. G. N. Grant, “Activation of cAMP-responsive genes by stimuli that produce long-term facilitation inAplysia sensory neurons,”Neuron,10, No. 3, 427–435 (1993).

    Article  PubMed  CAS  Google Scholar 

  34. L. Kaczmarek and A. Chandhuri, “Sensory regulation of immediate early gene expression in mammalian visual cortex: implications for functional mapping and neural plasticity,”Brain Res. Rev.,23, 237–256 (1997).

    Article  PubMed  CAS  Google Scholar 

  35. R. Kageyama, Y. Sasai, and S. Nakanishi, “Molecular characterization of transcription factors that bind to the cAMP-responsive region of the substance P precursor gene,”J. Biol. Chem.,266, 15525–15531 (1991).

    PubMed  CAS  Google Scholar 

  36. M. Krain and T. Hunter, “Transcriptional control by protein phosphorylation: signal transmission from the cell surface to the nucleus,”Curr. Biol.,5, 747–757 (1995).

    Article  Google Scholar 

  37. M. Karin and T. Smeal, “Control of transcription factors by signal transduction pathways: the beginning of the end,”TIBS,17, No. 10, 418–422 (1992).

    PubMed  CAS  Google Scholar 

  38. R. Kleiman, G. Banker, and O. Sreward, “Differential subcellular localization of particular mRNA's in hippocampal neurons in culture,”Neuron,5, 821–830 (1990).

    Article  PubMed  CAS  Google Scholar 

  39. J. M. Kormhauser and M. E. Greenberg, “A kinase to remember. Dual roles for MAP kinase in long-term memory,”Neuron,18, No. 6, 839–842 (1997).

    Article  Google Scholar 

  40. D. Kuhl, T. E. Kennedy, A. Barzilai, and E. R. Kandel, “Long-term sensitization training inAplysia leads to an increase in the expression of Bip, the major protein chaperon of the ER,”J. Cell Biol. 119, 1069–1076 (1992).

    Article  PubMed  CAS  Google Scholar 

  41. W. H. Landschultz, P. F. Johnson, and S. L. McKnight, “The DNA binding domain of the rat liver nuclear protein c/EBP is bipartite,”Science,243, 1681–1688 (1989).

    Google Scholar 

  42. W. H. Landschulz, P. F. Johnson, E. Y. Adashi, B. J. Braves, and S. L. McKnight, “Isolation of a recombinant copy of the gene encoding C/EBP,”Genes Dev.,2, 786–800 (1988).

    PubMed  CAS  Google Scholar 

  43. P. Lemaire, C. Vesque, J. Schmitt, H. Stunnenberg, R. Frank, and P. Charnay, “The serum-inducible mouse gene K20[-24 encodes a sequence specific transcriptional activator,”Mol. Cell Biol.,10, 3456–3467 (1990).

    PubMed  CAS  Google Scholar 

  44. E. J. Lewis, C. A. Harrington, and D. M. Chikaraishi, “Transcription regulation of the tyrosine hydroxylase gene by glucocorticoids and cyclic AMP,”Proc. Natl. Acad. Sci. USA,84, 3550–3554 (1987).

    Article  PubMed  CAS  Google Scholar 

  45. T. A. Lin, X. Kong, T. A. J. Haystead, A. Panse, G. Belsham, N. Sonenberg, and J. Lawrense,”PHAS-1 as a link between mitogen-activated protein kinase and translation initiation,”Science,266, 653–656 (1994).

    PubMed  CAS  Google Scholar 

  46. K. C. Martin and E. R. Kandel, “Cell adhesion molecules, CREB, and the formation of new synaptic connections during development and learning,”Neuron,17, 567–570 (1996).

    Article  PubMed  CAS  Google Scholar 

  47. K. C. Martin, D. Michael, J. C. Rose, M. Darad, A. Casadio, Y. Zhu, and E. R. Kandel, “MAP kinase translocates into the nucleus of the presynaptic cell and is required for long-term facilitation inAplysia,”Neuron,18, No. 6, 899–912 (1997).

    Article  PubMed  CAS  Google Scholar 

  48. B. Mellstrom, J. R. Naranjo, N. S. Folkes, M. Latarga, and P. Sassone-Corsi, “Transcriptional response to cAMP in brain: specific distribution and induction of CREM antagonists,”Neuron,10, 655–665 (1993).

    Article  PubMed  CAS  Google Scholar 

  49. R. Metz and E. Ziff “cAMP stimulates the C/EBP-related transcriptional factor rNEIL-6 to translocate to the nucleus and induce c-fos transcription,”Genes Dev.,5, 1754–1766 (1991).

    PubMed  CAS  Google Scholar 

  50. R. Metz and E. Ziff, “The helix-loop-helix protein re12 and the C/EBP-related rNEIL-6 bind to neighboring siters within the c-for serum response element,”Oncogene,6, 2165–2178 (1991).

    PubMed  CAS  Google Scholar 

  51. P. G. Montarolo, P. Goelet, V. F. Castelluci, J. Morgan, E. R. Kandel, and D. Schacher, “A critical period for macromolecular synthesis in long-term heterosynaptic facilitation inAplysia,”Science,234, 1249–1254 (1986).

    PubMed  CAS  Google Scholar 

  52. M. R. Montminy, and L. M. Bilezikjiam, “Binding of a nuclear protein to the cyclic-AMP response element of the somatostatin gene,”Nature,328, 175–178 (1987).

    Article  PubMed  CAS  Google Scholar 

  53. J. I. Morgan and T. Vurran, “Stimulus-transcription coupling in the nervous system: involvement of the inducible protooncogenes fos and jun,”Ann. Rev. Neurosci.,14, 421–451 (1991).

    Article  PubMed  CAS  Google Scholar 

  54. T. J. Nelson and D. L. Alkon, “Prolonged RNA changes in theHermissenda eye induced by classical conditioning,”Proc. Natl. Acad. Sci. USA,85, 7800–7804 (1988).

    Article  PubMed  CAS  Google Scholar 

  55. T. J. Nelson, C. Collin, and D. L. Alkon, “Isolation of a G-protein that is modified by learning and reduces potassium currents inHermissenda,”Science,247, 1479–1483 (1990).

    PubMed  CAS  Google Scholar 

  56. T. J. Nelson and D. L. Alkon, “Phosphorylation of the conditioning-associated GTP-binding protein cp-20 by protein kinase C,”J. Neurochem.,5, No. 65, 2350–2357 (1995).

    Google Scholar 

  57. C. Norman, M. Runswick, R. M. Pollack, and R. Treisman, “Isolation and characterization of cDNA clones encoding SRF, a transcription factor that binds the c-fos serum response element,”Cell,55, 989–1003 (1988).

    Article  PubMed  CAS  Google Scholar 

  58. R. Ofir, V. I. Dwarki, and D. Rashid, “Phosphorylation of the c-terminus of Fos protein is required for transcriptional transrepression of the c-fos promoter,”Nature,348, No. 6296, 80–84 (1990).

    Article  PubMed  CAS  Google Scholar 

  59. H. Oshima, D. Srapary, and S. S. Simon “The factor binding to the glucocorticoid modulatory element of the tyrosine aminotransferase gene is a novel and ubiquitous heteromeric complex,”Biol. Chem.,270, No. 37, 21893–21907 (1995).

    Article  CAS  Google Scholar 

  60. Z. Quan, M. Gilbert, and E. R. Kandel, “Temporal and spatial regulation of the expression of BAD2, a MAP kinase phosphatase during seizure, kindling, and long-term potentiation,”Learning Men.,1, 180–188 (1994).

    Google Scholar 

  61. S. Sugita, D. A. Baxter, and J. H. Byrne, “Modulation of a cAMP/protein kinase A cascade by protein kinase C in sensory neurons ofAplysia,”J. Neurosci.,17, No. 19, 7237–7244 (1997).

    PubMed  CAS  Google Scholar 

  62. W. S. Sossien, T. C. Sactor, and J. H. Schwartz, “Persistent activation of protein kinase C during the development of long-term facilitation inAplysia,”Learning Mem.,1, 189–202 (1994).

    Google Scholar 

  63. K. L. Thomas, S. Laroche, M. L. Errington, T. V. P. Bliss, and S. P. Hunt, “Spatial and temporal changes in signal transduction pathways during LTP,”Neuron,13, 737–745 (1994).

    Article  PubMed  CAS  Google Scholar 

  64. T. Tsukada, J. S. Fink, G. Mandel, and R. H. Goodman, “Identification of a region in the human vasoactive intestinal peptide gene responsible for regulation by cyclic AMP,”J. Biol. Chem.,262, 8743–8747 (1987).

    PubMed  CAS  Google Scholar 

  65. M. Vallejo, D. Ron, C. P. Miller, and J. F. Habener, “C/ATF, a member of the activating transcription factor family of DNA-binding proteins, dimerizes with CAAT/enhancer-binding proteins and directs their binding to cAMP-response element,”Proc. Natl. Acad. Sci. USA,90, 4679–4683 (1993).

    Article  PubMed  CAS  Google Scholar 

  66. C. Vinson, P. Sigler, and S. L. McKnight, “A scissor-grip model for DNA recognition by a family of leucine zipper proteins,”Science,246, 911–916 (1989).

    PubMed  CAS  Google Scholar 

  67. I. C. P. Yin, I. S. Wallach, M. Del Vecchio, E. L. Wilder, H. Zhou, W. G. Quinn, and T. Tully, “Induction of a dominant negative CREB transgene specifically blocks long-term memory inDrosophila,”Cell,79, No. 10, 49–58 (1994).

    Article  PubMed  CAS  Google Scholar 

  68. Y. Yovell, E. R. Kandel, Y. Dudai, and T. W. Abrams, “A quantitative study of the Ca2+/calmodulin sensitivity of adenylyl cyclase inAplysia,”J. Neurochem.,59, No. 50, 1736–1744 (1992).

    PubMed  CAS  Google Scholar 

  69. F. Wru, L. Friedman, and S. Schacher, “Transient versus persistent functional and structural changes associated with facilitation ofAplysia sensorimotor synapses are second messenger-dependent,”J. Neurosci. 15, 7517–7527 (1995).

    Google Scholar 

  70. I. S. Zacharov and P. M. Balaban, “Neuronal mechanisms of age-dependent changes in avoidance behavior of the snailHelix lucorum,”Neurosci.,23, No. 2, 721–729 (1987).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova Vol. 85, No. 1, pp. 48–66, January, 1999.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grinkevich, L.N., Vasil'ev, G.V. Possible molecular-cellular mechanisms of the regulation of gene expression during learning. Neurosci Behav Physiol 30, 277–292 (2000). https://doi.org/10.1007/BF02471781

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02471781

Key Words

Navigation