Skip to main content
Log in

Abstract

It is shown how to produce new examples of integrable Hamiltonian dynamical systems of differential geometric origin. These are normal geodesic flows of homogeneous Carnot-Carathéodory metrics. The relation to previous descriptions of such flows via non-Hamiltonian methods and to problems of analytic mechanics is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. V.I. Arnol'd, Mathematical methods of classical mechanics.,Springer-Verlag, Berlin-Heidelberg-New York, 1978.

    Google Scholar 

  2. V.I. Arnol'd, V.V. Kozlov, and A.I. Nejshtadt, Mathematical aspects of classical and celestial mechanics. In: Dynamical Systems III, Encyclopaedia of Mathematical Sciences, Vol. 3,Springer-Verlag, Berlin-Heidelberg-New York, 1988.

    Google Scholar 

  3. V.N. Berestovskii, Homogeneous spaces with intrinsic metric.Sov. Math. Dokl. 38 (1989), 60–63.

    MathSciNet  Google Scholar 

  4. —, Geodesics of nonholonomic left-invariant intrinsic metrics on the Heisenberg group and isoperimetric curves on the Minkowskii plane. (Russian)Siberian Math. J. 35 (1994), 1–8.

    Article  MATH  MathSciNet  Google Scholar 

  5. L. Cesari, Optimization theory and applications.Springer-Verlag, New York, 1983.

    MATH  Google Scholar 

  6. S.A. Chaplygin, Investigations in the dynamics of nonholonomic systems. (Russian)Gostekhizdat, Moscow-Leningrad, 1947.

    Google Scholar 

  7. M. Gromov, Carnot-Carathéodory spaces seeing from within.Preprint, IHES, 1994.

  8. U. Hamenstädt, Some regularity theorems for Carnot-Carathéodory metrics.J. Differ. Geom 32 (1990), 819–850.

    MATH  Google Scholar 

  9. J. Mitchell, On Carnot-Carathéodory metrics.J. Differ. Geom. 21 (1985), 35–45.

    MATH  Google Scholar 

  10. R. Montgomery, Abnormal minimizers.SIAM J. Control and Optimiz. 32 (1994), 1605–1620.

    Article  MATH  Google Scholar 

  11. S.P. Novikov and I. Shmel'tser, Periodic solutions of the Kirchhoff equations for the free motion of a rigid body in a liquid, and the extended Lyusternik-Schnirelmann-Morse (LSM) theory. I.Funct. Anal. and Appl. 15 (1981), 197–207.

    Article  MathSciNet  Google Scholar 

  12. G. Paternain, On the topology of manifolds with completely integrable geodesic flows.Ergodic Theory and Dynam. Syst. 12 (1992), 109–121.

    MATH  MathSciNet  Google Scholar 

  13. R.S. Strichartz, Sub-Riemannian geometry,J. Differ. Geom. 24 (1986), 221–263;J. Differ. Geom. 30 (1989), 595–596.

    MATH  MathSciNet  Google Scholar 

  14. I.A. Taimanov, Topological obstructions to integrability of geodesic flows on non-simply-connected manifolds.Math. USSR Izv. 30 (1988), 403–409.

    Article  MathSciNet  Google Scholar 

  15. —, The topology of Riemannian manifolds with integrable geodesic flows.Proc. Steklov Inst. Math. 205 (1995), 139–150.

    MATH  MathSciNet  Google Scholar 

  16. T.J.S. Taylor, Some aspects of differential geometry associated with hypoelliptic second order operators.Pacif. J. Math. 136 (1989), 355–378.

    MATH  Google Scholar 

  17. A.M. Vershik and V.Ya. Gershkovich, Nonholonomic dynamical systems, geometry of distributions, and variational problems. In: Dynamical Systems VII, Encyclopaedia of Mathematical Sciences, Vol. 16,Springer-Verlag, Berlin-Heidelberg-New York, 1994, 1–81.

    Google Scholar 

  18. A.P. Veselov and L.E. Veselova, Integrable nonholonomic systems on Lie groups. (Russian)Math. Notes 44 (1988), 810–819.

    MATH  MathSciNet  Google Scholar 

  19. S.K. Vodopjanov and A.V. Greshnov, On extension of functions with bounded mean oscillation onto a space of homogeneous type with intrinsic metric. (Russian)Siberian Math. J. 37 (1996).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taimanov, I.A. Integrable geodesic flows of nonholonomic metrics. Journal of Dynamical and Control Systems 3, 129–147 (1997). https://doi.org/10.1007/BF02471765

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02471765

1991 Mathematics Subject Classification

Key words and phrases

Navigation