Bulletin of Mathematical Biology

, Volume 38, Issue 2, pp 119–133 | Cite as

Symmetry and information content of chemical structures

  • D. Bonchev
  • D. Kamenski
  • V. Kamenska
Article

Abstract

A method, based on symmetry, is suggested for determining the information content of systems. A comparison has been made between the information for symmetry, topology, and chemical composition. The new information measure increases when the asymmetry of the molecules and the number of atoms in the latter increases. It can distinguish between different molecular conformations, and give a linear correlation with the absolute entropy for homologous series of chemical compounds.

Keywords

Information Content Automorphism Group Directed Graph Point Group Homologous Series 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Brillouin, L. 1956.Science and Information Theory. New York: Academic Press.MATHGoogle Scholar
  2. Dancoff, S. M. and H. Quastler. 1953. “The Information Content and Error Rate of Living Things.” InEssays on the Use of Information Theory in Biology, Quastler, H., ed. Urbana: University of Illinois Press.Google Scholar
  3. Hochstrasser, Robin M. 1966.Molecular Aspects of Symmetry. New York. Amsterdam: W. A. Benjamin.Google Scholar
  4. Jaffé, H. H. and M. Orchin. 1965.Symmetry in Chemistry: New York, London, Sydney: J. Wiley and Sons.Google Scholar
  5. Karapetjanz, M. H. and M. L. Karapetjanz. 1968.Osnovnie termodinamicheskie konstanti neorganicheskih i organicheskih vestestv. Moskva: Himiya Press.Google Scholar
  6. Karreman, G. 1955. “Topological Information Content and Chemical Reactions.”Bull. Math. Biophys.,17, 279–285.Google Scholar
  7. Linshitz, H. 1953. “The Information Content of a Bacterial Cell.” InEssays on the Use of Information Theory in Biology.Google Scholar
  8. Morowitz, H. 1955. “Some Order-Disorder Considerations in Living Systems.”Bull. Math. Biophys.,17, 81–86.Google Scholar
  9. Mowshowitz, A. 1968a. “Entropy and the Complexity of Graphs: I. An Index of the Relative Complexity of a Graph.”Bull. Math. Biophys.,30, 175–204.MATHMathSciNetGoogle Scholar
  10. ——. 1968b. “Entropy and the Complexity of Graphs: II. The Information Content of Digraphs and Infinite Graphs.,30, 225–240.MATHMathSciNetGoogle Scholar
  11. ——. 1968c. “Entropy and the Complexity of Graphs: III. Graphs with Prescribed Information Content.”30, 387–414.MATHMathSciNetGoogle Scholar
  12. ——. 1968d. “Entropy and the Complexity of Graphs: IV. Entropy Measures and Graphical Structure.,30, 533–546.MATHMathSciNetGoogle Scholar
  13. Rashevsky, N. 1955. “Life, Information Theory, and Topology.”Bull. Math. Biophys.,17, 229–235.MathSciNetGoogle Scholar
  14. ——. 1960. “Life, Information Theory, Probability, and Physics.”Bull. Math. Biophys.,22, 351–364.MathSciNetGoogle Scholar
  15. Shannon, C., and W. Weaver. 1949.Mathematical Theory of Communication. Urbana: University of Illinois Press.MATHGoogle Scholar
  16. Trucco, E. 1956a. “A Note on the Information Content of Graphs.”Bull. Math. Biophys. 18, 129–135.MathSciNetGoogle Scholar
  17. ——. 1956b. “On the Information Content of Graphs: Compound Symbols; Different States for each Point.”18, 237–253.MathSciNetGoogle Scholar
  18. Valentinuzzi, M. and M. E. Valentinuzzi. 1962. “Contribution al Estudio del Contenido de Information de Estructuras Quimicas.”Anales de la Sociedad Cientifica Argentina, Juli-December, 1–86.Google Scholar
  19. ——. 1963. “Information Content of Chemical Structures and Some Possible Biological Applications.”Bull. Math. Biophys.,25, 11–27.Google Scholar
  20. Wigner, E. 1931. Gruppentheorie und ihre Anwendungen auf die Quantenmechanik der Atomspectren. Braunschweig: Friedr. Vieweg und Sohn.Google Scholar

Copyright information

© Society for Mathematical Biology 1976

Authors and Affiliations

  • D. Bonchev
    • 1
  • D. Kamenski
    • 1
  • V. Kamenska
    • 1
  1. 1.Department of Physical ChemistryHigher School of Chemical TechnologyBurgasBulgaria

Personalised recommendations