Skip to main content
Log in

The beneficial effect of superoxide dismutase on the rat liver graft

  • Original Articles
  • Published:
The Japanese journal of surgery Aims and scope Submit manuscript

Abstract

We performed orthotopic liver transplantation in male Wistar rats and investigated the effect of superoxide dismutase (SOD) on the liver graft. Animals were divided into the four following experimental groups. Group I was an untreated control group, group II received oxygen, group III received SOD and group IV received both oxygen and SOD. The dose of SOD was 3 mg/kg which was injected intravenously into both donors and recipients during the operation. Oxygen was given through an oxygen inhaler to both donors and recipients during the operation. The preservation time of the liver graft ranged from 4 hours and 41 minutes to 5 hours and 40 minutes. The survival after liver transplantation was compared among groups I, II, III and IV. Group IV showed a significantly higher survival rate than groups I and II by two weeks after liver grafting, but there was no statistical difference in the survival rates between groups III and IV. These results indicate the beneficial effect of SOD on the rat liver graft and may implicate oxygen free radicals in the pathogenesis of ischemia/reperfusion injury in liver grafts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stewart JR, Blackwell WH, Crute SL, Loughlin V, Greenfield LJ, Hess ML. Inhibition of surgically induced ischemia/reperfusion injury by oxygen free radical scavengers. J Thorac Cardiovasc Surg 1983; 86: 262–272.

    PubMed  CAS  Google Scholar 

  2. Dalsing MC, Grosfeld JL, Shiffler MA, Vane DW, Hull M, Baehner RL, Weber TR. Superoxide dismutase: a cellular protective enzyme in bowel ischemia. J Surg Res 1983; 34: 589–596.

    Article  PubMed  CAS  Google Scholar 

  3. Shlafer M, Kane PF, Kirsh MM. Superoxide dismutase plus catalase enhances the efficacy of hypothermic cardioplegia to protect the globally ischemic, reperfused heart. J Thorac Cardiovasc Surg 1982; 83: 830–839.

    PubMed  CAS  Google Scholar 

  4. Perry MA, Wadhwa S, Parks DA, Pickard W, Granger DN. Role of oxygen radicals in ischemia-induced lesions in the cat stomach. Gastroenterology 1986; 90: 362–367.

    PubMed  CAS  Google Scholar 

  5. Jellinek M, Castaneda M, Garvin PJ, Niehoff M, Codd JE. Oxidation-reduction maintenance in organ preservation. Arch Surg 1985; 120: 439–442.

    PubMed  CAS  Google Scholar 

  6. Im MJ, Shen WH, Pak CJ, Manson PN, Bulkley GB, Hoopes JE. Effect of allopurinol on the survival of hyperemic island skin flaps. Plast Reconstr Surg 1984; 73: 276–278.

    PubMed  CAS  Google Scholar 

  7. Gardner TJ, Stewart JR, Casale AS, Downey JM, Chambers DE. Reduction of myocardial ischemic injury with oxygen-derived free radical scavengers. Surgery 1983; 94: 423–427.

    PubMed  CAS  Google Scholar 

  8. Hogstrom H, Haglund U. Neutropenia prevents decrease in strength of rat intestinal anastomosis: partial effect of oxygen free radical scavengers and allopurinol. Surgery 1986; 99: 716–720.

    PubMed  CAS  Google Scholar 

  9. Stewart JR, Blackwell WH, Crute SL, Loughlin V, Hess ML, Greenfield LJ. Prevention of myocardialischemia/reperfusion injury with oxygen free-radical scavengers. Surg Forum 1982; 33: 317–320.

    Google Scholar 

  10. Hansson R, Gustafsson B, Jonsson O, Lundstam S, Pettersson S, Schersten T, Waldenstrom J. Effect of xanthine oxidase inhibition on renal circulation after ischemia. Transpl Proc 1982; 14: 51–58.

    CAS  Google Scholar 

  11. Dempoulos HB, Flamm ES, Pietronigro DD, Seligman ML. The free radical pathology and the microcirculation in the major central nervous system disorders. Acta Physiol Scand 1980; 492 (suppl): 91–119.

    Google Scholar 

  12. Parks DA, Bulkley GB, Granger DN. Role of oxygen-derived free radicals in digestive tract diseases. Surgery 1983; 94: 415–422.

    PubMed  CAS  Google Scholar 

  13. Marubayashi S, Dohi K, Ochi K, Kawasaki T. Role of free radicals in ischemic rat liver cell injury: prevention of damage by α-tocopherol administration. Surgery 1986; 99: 184–192.

    PubMed  CAS  Google Scholar 

  14. Marubayashi S, Dohi K, Ezaki H, Yamada K, Kawasaki T. Preservation of ischemic liver cell— prevention of damage by coenzyme Q10. Transpl Proc 1983; 15: 1297–1299.

    CAS  Google Scholar 

  15. Klebanoff SJ. Oxygen metabolism and the toxic properties of phagocytes. Ann Int Med 1980; 93: 480–489.

    PubMed  CAS  Google Scholar 

  16. McCord JM. The superoxide free radical: its biochemistry and pathophysiology. Surgery 1983; 94: 412–414.

    PubMed  CAS  Google Scholar 

  17. Al-Khalidi UAS, Chaglassian TH. The species distribution of xanthine oxidase. Biochem. J 1965; 97: 318–320.

    PubMed  CAS  Google Scholar 

  18. Granger DN, Rutili G, McCord JM. Superoxide radicals in feline intestinal ischemia. Gastroenterology 1981; 81: 22–29.

    PubMed  CAS  Google Scholar 

  19. Parks DA, Bulkley GB, Granger DN, Hamilton SR, McCord JM. Ischemic injury to the cat small intestine: role of superoxide radicals. Gastroenterology 1982; 82: 9–15.

    PubMed  CAS  Google Scholar 

  20. Shlafer M, Kane PF, Wigins VY, Kirsh MM. Possible role for cytotoxic oxygen metabolism in the pathogenesis of cardiac ischemic injury. Circulation 1982; 66 (suppl 1): 185–192.

    Google Scholar 

  21. Lefer AM, Araki H, Okamatsu S. Beneficial actions of a free radical scavenger in traumatic shock and myocardial ischemia. Circ Shock 1981; 8: 273–282.

    PubMed  CAS  Google Scholar 

  22. Kamada N, Calne RY. Orthotopic liver transplantation in the rat. Transplantation 1979; 28: 47–50.

    PubMed  CAS  Google Scholar 

  23. Parks DA, Bulkley GB, Granger DN. Role of oxygen free radicals in shock, ischemia, and organ preservation. Surgery 1983; 94: 428–432.

    PubMed  CAS  Google Scholar 

  24. Owens ML, Lazarus HM, Wolcott MW, Maxwell JG, Taylor B. Allopurinol and hypoxanthine pretreatment of canine kidney donors. Transplantation 1974; 17: 424–427.

    PubMed  CAS  Google Scholar 

  25. Toledo-Pereyra LH, Simmons RL, Najarian JS. Effect of allopurinol on the preservation of ischemic kidneys perfused with plasma or plasma substitutes. Ann Surg 1974; 180: 780–782.

    PubMed  CAS  Google Scholar 

  26. Bry WI, Collins GM, Halasz NA, Jellinek M. Improved function of perfused rabbit kidneys by prevention of oxidative injury. Transplantation 1984; 38: 579–582.

    PubMed  CAS  Google Scholar 

  27. Gregory EM, Fridovich I. Oxygen toxicity and the superoxide dismutase. J Bacteriol 1973; 114: 1193–1197.

    PubMed  CAS  Google Scholar 

  28. Degertekin H, Ertan A, Yates RD, Meter KV, Akdamar K. Hyperbaric oxygen, allopurinol, and diet-induced acute pancreatitis. Ann Int Med 1985; 103: 474–475.

    PubMed  CAS  Google Scholar 

  29. Deneke SM, Fanburg BL. Normobaric oxygen toxicity of the lung. New Ing J Med 1980; 303: 76–86.

    Article  CAS  Google Scholar 

  30. Frank L. Endotoxin reverses the decreased tolerance of rats to >95 per cent O2 after preexposure to lower O2. J Appl Physiol: Respirat Environ Exercise Physiol 1981; 51: 577–583.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mizuta, T., Saito, A., Kawano, N. et al. The beneficial effect of superoxide dismutase on the rat liver graft. The Japanese Journal of Surgery 19, 208–212 (1989). https://doi.org/10.1007/BF02471587

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02471587

Key Words

Navigation