Skip to main content
Log in

Role of the specific power of discharge in ion thermochemical treatment of alloys

  • Chemicothermal Treatment
  • Published:
Metal Science and Heat Treatment Aims and scope

Conclusions

  1. 1.

    The maximum density of plasma energy, the qualitative characteristic of which is the specific power of the discharge, provides the greatest thickness of the diffusion layer in saturation from a gas medium at a constant temperature.

  2. 2.

    The dependence of the specific power of the discharge on the pressure of the saturating medium has a maximum in various kinds of ITCT of metals and alloys, i.e., nitriding, carburizing (nitrocarburizing), and siliconizing.

  3. 3.

    The energy characteristic of the glow discharge, i.e., its specific power, should be one of the main factors determining the diffusion saturation in all kinds of ITCT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. N. Arzamasov,Thermochemical Treatment in Activated Gas Media [in Russian], Mashinostroenie, Moscow (1979).

    Google Scholar 

  2. B. Edenhofer, “Fortshritte in prozeβregelung beim Plasmanitrieren,”Harten-Technische Mitteilung,44(6), 339–345 (1989).

    CAS  Google Scholar 

  3. A. E. Mezhonov and V. E. Kol'tsov, “A thermodynamic model of the process of nitriding in glow discharge,” in:Methods of Surface Hardening of Machine Parts and Tools, Trudy MADI [in Russian], Moscow (1983), pp. 53–59.

  4. T. A. Panaioti, “Effect of pressure in gas-discharge chamber on the depth of nitrogen diffusion in titanium alloys,”Metalloved. Term. Obrab. Met., No. 9, 32–35 (1998).

    Google Scholar 

  5. A. A. Babad-Zakhryapin and G. D. Kuznetsov,Thermochemical Treatment in Glow Discharge [in Russian], Atomizdat, Moscow (1975).

    Google Scholar 

  6. N. A. Kaptsov,Electronics [in Russian], Gostekhteorizdat, Moscow (1953).

    Google Scholar 

  7. K. Keller, “Schichtaufbau glimmnitrierten Eisenwerkstoffe,”Harterei Technische Mitteilung,26(2), 120–128 (1971).

    CAS  Google Scholar 

  8. B. Edenhofer, “Möglichkeiten und Grenzen der Plasmaaufkohlung: Vorgetragen auf dem 45,” Harterei-Kolloguium (4–6 Oktober 1990, Wiesbaden),Harterei-Technische Mitteilungen,45(3), 154–162 (1990).

    CAS  Google Scholar 

  9. B. Edenhofer, “Progress in the control of plasmanitriding and carburizing for better layer consistency and reproducibility,” in:Plasma Surface Engineering: Pap. 1st Int. Conf. Garmisch-Partenkirchen, Sept. 19–23, 1988, Vol. 1, Oberursel (1989), pp. 257–268.

  10. B. N. Arzamasov, A. G. Bratukhin, Yu. S. Eliseev, and T. A. Panaioti,Ion Thermochemical Treatment of Alloys [in Russian], Izd. MGTU im. N. É. Baumana, Moscow (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka metallov, No. 6, pp. 31–34, June, 2000.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arzamasov, B.N., Panaioti, T.A. Role of the specific power of discharge in ion thermochemical treatment of alloys. Met Sci Heat Treat 42, 234–237 (2000). https://doi.org/10.1007/BF02471318

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02471318

Keywords

Navigation