Advertisement

The Japanese journal of surgery

, Volume 12, Issue 5, pp 372–380 | Cite as

Superior action of magnesium-lidocaine-1-aspartate cardioplegia to glucose-insulin-potassium cardioplegia in experimental myocardial protection

  • Makoto Sunamori
  • Jun Amano
  • Takao Okamura
  • Akio Suzuki
Original Articles

Abstract

The effect of 2 hours of hypothermic Mg-lidocaine cardioplegia upon left ventricular function, myocardial high-energy stores, edema, and ultrastructure was studied as compared to glucose-insulin-potassium (GIK) cardioplegia in 12 mongrel dogs. The myocardial temperature recorded in the ventricular septum was kept at 20°C during the cardioplegia. The heart was re-warmed up to 37°C by the support of cardiopulmonary bypass, then, observations were made during a 60 minutes reperfusion. Left ventricular function was preserved at a more physiological level in cases of Mg-lidocaine cardioplegia. Myocardial ATP was preserved at significantly higher levels following Mg-lidocaine cardioplegia than in cases of GIK cardioplegia (p<0.05). However, content of myocardial creatine phosphate was higher in the GIK cardioplegia group than that in Mg-lidocaine group in the subendocardium and the ventricular septum. Myocardial edema was significantly suppressed following Mg-lidocaine cardioplegia, and such was significantly lower than in cases of GIK cardioplegia (p<0.05). The myocardial ultrastructure was protected from ischemic insult in the Mg-lidocaine cardioplegia group. These data suggest that Mg-lidocaine-1-aspartate solution is superior to GIK solution as a cardioplegic solution, and that such will feasibly provide myocardial, protection for 2 hours of hypothermic cardiac arrest, in an experimental reperfused model.

Key Words

cardioplegia myocardial protection lidocaine hypothermia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Trump, B.F., Mergner, W.J., Kahng, M.W. and Saladino, A.J.: Studies on the subcellular pathophysiology of ischemia. Circulation 53 (Suppl. 1): 17–26, 1976.Google Scholar
  2. 2.
    Jennings, R.B. and Ganote, C.E.: Mitochondrial structure and function in acute myocardial ischemic injury. Circ. Res. 38 (Suppl. 1): 81–91, 1976.Google Scholar
  3. 3.
    Jennings, R.B.: Relationship of acute ischemia to functional defects and irreversibility. Circulation 53 (Suppl. 1): 26–29, 1976.Google Scholar
  4. 4.
    Michaelis, L.L. and Behrendt, D.M.: Intraoperative protection of the myocardium. A symposium. Ann. Thorac. Surg. 20: 1–115, 1975.Google Scholar
  5. 5.
    Effler, D.B., McGoon, D.C., Cooley, D.A., Baird, R.J., Engelman, R.M., Kahn, D.R. and Spencer, F.C.: Myocardial preservation. Open discussion. J. Thorac. Cardiovasc. Surg. 70: 1024–1029, 1975.Google Scholar
  6. 6.
    Maloney, J.V. Jr. und Nelson, R.L.: Myocardial preservation during cardiopulmonary bypass. An overview. J. Thorac. Cardiovasc. Surg. 70: 1040–1050, 1975.PubMedGoogle Scholar
  7. 7.
    Brody, W.R., Reitz, B.A., Andrews, M.J., Roberts, W.C. and Michaelis, L.L.: Long-term morphologic and hemodynamic evaluation of the left ventricle after cardiopulmonary bypass. A comparison of normothermic anoxic arrest, coronary perfusion, and profound topical cardiac hypothermia. J. Thorac. Cardiovasc. Surg. 70: 1073–1084, 1975.PubMedGoogle Scholar
  8. 8.
    Sunamori, M. and Suzuki, A.: The long-termed morphological changes in the left ventricular myocardium following open heart surgery. J. Jpn. Assoc. Surg. 82: 337–341, 1981.Google Scholar
  9. 9.
    Hildner, F.J., Javier, R.P., Cohen, L.S., Samet, P., Nathan, M.J., Yahr, W.Z. and Greenberg, J.J.: Myocardial dysfunction associated with valvular heart disease. Am. J. Cardiol. 30: 319–326, 1972.PubMedCrossRefGoogle Scholar
  10. 10.
    Bleese, N., Döring, V., Kalmar, P., Pokar, H., Polonius, M.-J., Steiner, D. and Rodewald, G.: Intraoperative myocardial protection by cardioplegia in hypothermia. Clinical findings. J. Thorac Cardiovasc. Surg. 75: 405–413, 1978.PubMedGoogle Scholar
  11. 11.
    Braimbridge, M.V., Chayen, J., Bitensky, L., Hearse, D.J., Jynge, P. and Cankovic-Darracott, S.: Cold cardioplegia or continuous coronary perfusion? Report on preliminary clinical experience as assessed cytochemically. J. Thorac. Cardiovasc. Surg. 74: 900–906, 1977.PubMedGoogle Scholar
  12. 12.
    Bixler, T.J., Gardner, T.J., Flaherty, J.T., Goldman, R.A. and Gott, V.L.: Effect of procaine-induced cardioplegia on myocardial ischemia, myocardial edema, and postarrest ventricular function. A comparison with potassium-induced cardioplegia and hypothermia. J. Thorac. Cardiovasc. Surg. 75: 886–893, 1977.Google Scholar
  13. 13.
    Tyers, G.F.O., Manley, N.J., Williams, E.H., Shaffer, C.W., Williams, D.R. and Kurusz, M.: Preliminary clinical experience with isotonic hypothermic potassium-induced arrest. J. Thorac. Cardiovasc. Surg. 74: 674–681, 1977.PubMedGoogle Scholar
  14. 14.
    Engelman, R.M., Auvil, J., O’Donoghue, M.J. and Levistsky, S.: The significance of multidose cardioplegia and hypothermia in myocardial preservation during ischemic arrest. J. Thorac. Cardiovasc. Surg. 75: 555–563, 1978.PubMedGoogle Scholar
  15. 15.
    Sunamori, M. and Harrison, C.E. Jr.: Myocardial respiration and edema following hypothermic cardioplegia and anoxic arrest. J. Thorac. Cardiovasc. Surg. 78: 208–216, 1979.PubMedGoogle Scholar
  16. 16.
    Singh, C.M., Flear, C.T.G., Nandra, A. and Ross, D.N.: Electrolyte changes in the human myocardium after anoxic arrest. Cardiology 56: 128–135, 1972.CrossRefGoogle Scholar
  17. 17.
    Whalen, D.A. Jr., Hamilton, D.G., Ganote, C.E. and Jennings, R.B.: Effect of a transient period of ischemia on myocardial cells. I. Effects of cell volume regulation. Am. J. Pathol. 74: 381–398, 1974.PubMedGoogle Scholar
  18. 18.
    Amano, J., Kameda, T., Sunamori, M. and Suzuki, A.: Correlation between water content, left ventricular function, coronary blood flow and myocardial metabolism after ischemic cardiac arrest. J. Mol. Cell. Cardiol. 12: Supp. 1: 6, 1980.Google Scholar
  19. 19.
    Wollenberger, A. and Krause, E.-G.: Metabolic control characteristics of oxidative phosphorylation in cardiac mitochondria from normal animals and animals in heart failure. Circ. Res. 22: 349–359, 1968.Google Scholar
  20. 20.
    Bergmeyer, H.U.: Methods of enzymatic analysis. pp. 539–543, Academic Press, New York, 1963.Google Scholar
  21. 21.
    Sunamori, M., Trout, R.G., Kaye, M.P. and Harrison, C.E. Jr.: Quantitative evaluation of myocardial ultrastructure following hypothermic anoxic arrest. J. Thorac. Cardiovasc. Surg. 76: 518–527, 1978.PubMedGoogle Scholar
  22. 22.
    Flaming, W., Borgers, M., Daenen, W., Thone, F., Coumans, W.A., Van der Vusse, G.J. and Stalpaert, G.: St. Thomas cardioplegia versus topical cooling: Ultrastructural and biochemical studies in humans. Ann. Thorac. Surg. 31: 339–346, 1981.CrossRefGoogle Scholar
  23. 23.
    Griepp, R.B., Stinson, E.B. and Shumway, N.E.: Profound local hypothermia for myocardial protection during open-heart surgery. J. Thorac. Cardiovasc. Surg. 66: 731–741, 1973.PubMedGoogle Scholar
  24. 24.
    Tyers, G.F.O., Williams, E.H., Hughes, H.C. and Todd, G.J.: Effect of perfusate temperature on myocardial protection from ischemia. J. Thorac. Cardiovasc. Surg. 73: 766–771, 1977.PubMedGoogle Scholar
  25. 25.
    Stemmer, E.A., Joy, I., Aronow, W.S., Thibault, W., McCart, P. and Connolly, J.E.: Preservation of myocardial ultrastructure. J. Thorac. Cardiovasc. Surg. 70: 666–676, 1975.PubMedGoogle Scholar
  26. 26.
    Hearse, D.J., Stewart, D.A. and Braimbridge, M.V.: Cellular protection during myocardial ischemia. The development and characterization of a procedure for the induction of reversible ischemi arrest. Circulation 54: 193–202, 1976.PubMedGoogle Scholar
  27. 27.
    Johnson, C.L. and Schwartz, A.: Some effects of local anesthetics on isolated mitochondria. J. Pharmacol. Exp. Ther. 167: 365–373, 1969.PubMedGoogle Scholar
  28. 28.
    Judah, J.D., McLean, A.E.M., Ahmed, K. and Christie, G.S.: Active transport of potassium by mitochondria. II. Effect of substrate and inhibitors. Biochim. Biophys. Acta. 94: 441–451, 1965.Google Scholar
  29. 29.
    Azzi, A. and Scarpa, A.: Inhibition of K+ transport in liver mitochondria. Biochim. Biophys. Acta 135: 1087–1088, 1967.PubMedCrossRefGoogle Scholar
  30. 30.
    Kohlhardt, M.: Functional differentiation of the transmembrane sodium and calcium channels in mammalian cardiac fibers by use of specific inhibitors. Recent Adv. Stud. Cardiac. Struct. Metab. 5: 19–26, 1975.PubMedGoogle Scholar
  31. 31.
    Schaub, R.G., Stewart, G., Strong, M., Ruotolo, R. and Lemole, G.: Reduction of ischemic myocardial damage in the dog by lidocaine infusion. Am. J. Pathol. 87: 399–414, 1977.PubMedGoogle Scholar
  32. 32.
    Baron, D.W., Sunamori, M., Dewey, J.D. and Harrison, C.E.: Protective effect of lidocaine hydrochloride on oxidative phosphorylation in ischemic and reperfused canine, myocardium. J. Mol. Cell Cardiol. 12 (Supp. 1): 13, 1980.Google Scholar
  33. 33.
    Okamura, T., Sunamori, M. and Suzuki, A.: Protective effect of lidocaine in ischemic reperfused canine myocardium. Evaluation by hemodynamic, biochemical and ultratural study. Jpn. Circ. J. (in press)Google Scholar
  34. 34.
    Nasser, F.N., Walls, J.T., Edwards, W.D. and Harrison, C.E. Jr.: Lidocaine-induced reduction in size of experimental myocardial infarction. Am. J. Cardiol. 46: 967–975, 1980.PubMedCrossRefGoogle Scholar
  35. 35.
    Döring, V., Baumgarten, H.G., Pokar, H. and Gercken, G.: Metabolism and fine structure of the Mg++-procaine-arrested perfused heart. Basic Res Cardiol. 70: 186–197, 1975.PubMedCrossRefGoogle Scholar
  36. 36.
    Kalmar, P., Bleese, N., Kirsch, U., Lutz, G.G., Pokar, H. and Rodewald, G.: Konbination von Kardioplegie und Koronarperfusion bei Herzoperationen in Normothermie. Thorax-Chirurgie 20: 427–431, 1972.Google Scholar
  37. 37.
    Kirsch, U., Rodewald, G. and Kalmar, P.: Induced ischemic arrest. Clinical experience with cardioplegia in open-heart surgery. J. Thorac. Cardiovasc. Surg. 63: 121–130, 1972.PubMedGoogle Scholar
  38. 38.
    Nakae, S., Webb, W.R., Salyer, K.E., Unal, M.O., Cook, W.A., Dodds, R.P. and Williams, G.T.: Extended survival of the normothermic anoxic heart with metabolic inhibitors. Ann. Thorac. Surg. 3: 37–42, 1967.PubMedCrossRefGoogle Scholar
  39. 39.
    Hearse, D.J., Stewart, D.A. and Braimbridge, M.V.: Myocardial protection during ischemic cardiac arrest. The importance of magnesium in cardioplegic infusates. J. Thorac. Cardiovasc. Surg. 75: 877–885, 1978.PubMedGoogle Scholar
  40. 40.
    Weber, A., Herz, R. and Reiss, I.: The role of magnesium in the relaxation of myofibrils. Biochemistry 8: 2266–2271, 1969.PubMedCrossRefGoogle Scholar
  41. 41.
    Sordahl, L.A. and Silver, B.B.: Pathological accumulation of calcium by mitochondria. Modulation by magnesium. Recent Adv. Stud. Cardiac. Struct. Metab. 6: 85–93, 1975.PubMedGoogle Scholar
  42. 42.
    Sunamori, M., Suzuki, A. and Harrison, C.E. Jr.: Effect of magnesium in cardioplegic solution upon hypothermic ischemic myocardial mitochondria. Jpn. Circ. J. 44: 81–86, 1980.PubMedGoogle Scholar

Copyright information

© The Japan Surgical Society 1982

Authors and Affiliations

  • Makoto Sunamori
    • 1
  • Jun Amano
    • 1
  • Takao Okamura
    • 1
  • Akio Suzuki
    • 1
  1. 1.Department of Thoracic-Cardiovascular SurgeryJuntendo University School of MedicineTokyoJapan

Personalised recommendations