Skip to main content
Log in

Relationship of deranged energy metabolism in liver and kidney to arterial ketone body ratio following liver ischemia in rats

  • Original Articles
  • Published:
The Japanese journal of surgery Aims and scope Submit manuscript

Abstract

Changes in energy metabolism in the liver and kidney in liver ischemia induced in rats were simultaneously studied, in terms of energy charge (EC) and mitochondrial oxidoreduction state. Mean arterial blood pressure, glucose and lactate, total ketone bodies (acetoacetate+β-hydroxybutyrate) and the ketone body ratio in arterial blood (KBR) were also investigated. During and after liver ischemia, both organs showed similar patterns of reversibility, and KBR, which reflects the mitochondrial oxidoreduction state, correlated well with EC, in both organs. Referring to the mortality and changes in substrates above mentioned, KBR is a pertinent parameter for detection of viability following induced liver ischemia. It was also suggested that KBR may indicate a regulation role by the liver, in kidney energy metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gaja G, Ferrero ME, Piccoletti R, Zazzara AB. Phosphorylation and redox state in ischemic liver. Exp Mol Pathol 1973; 19: 248–265.

    Article  PubMed  CAS  Google Scholar 

  2. Trump BF, Mergner WJ, Kahng MW, Saladino AJ. Studies on the subcellular pathophysiology of ischemia. Circulation 1976; 43, suppl. 1: 1–17.

    Google Scholar 

  3. Brosnan JT, Krebs HA, Williamson DH: Effects of ischemia on metabolite concentrations in rat liver. Biochem J 1970; 117: 91–96.

    PubMed  CAS  Google Scholar 

  4. Hems DA, Brosnan JT. Effects of ischemia on contents of metabolites in rat liver and kidney. Biochem J 1970; 120: 105–111.

    PubMed  CAS  Google Scholar 

  5. Farkouh EF, Daniel AM, Beaudoin JG, MacLean LD. Predictive value of liver biochemistry in acute hepatic ischemia. Surg Gynecol Obstet 1971; 132: 832–838.

    PubMed  CAS  Google Scholar 

  6. Atkinson DE. The energy charge of the adenylate pool as a regulatory parameter. Interaction with feed back modifiers. Biochemistry 1968; 7: 4030–4034.

    Article  PubMed  CAS  Google Scholar 

  7. Yamamoto M, Tanaka J, Ozawa K, Tobe T. Significance of acetoacetate/β-hydroxybutyrate ratio in arterial blood as an indicator of the severity of hemorrhagic shock. J Surg Res 1980; 28: 124–131.

    Article  PubMed  CAS  Google Scholar 

  8. Yamamoto M, Ozawa K, Isselhard W, Tobe T. Acetbacetate/β-hydroxybutyrate ratio in arterial blood and liver during and after liver ischemia. —A clue to detect the viability of ischemic liver. Arch Jpn Chir 1983; 52: 508–519.

    CAS  Google Scholar 

  9. Hultman E. Rapid specific method for determination of aldosaccharides in body fluids. Nature 1959; 183: 108–109.

    Article  PubMed  CAS  Google Scholar 

  10. Wollenberger A, Ristau O, Schoffa G. Eine emfache Teknik der extrem schnellen Abkühlung grösserer Gewebestücke. Pflügers Arch Ges Physiol 1960; 270: 399–412.

    Article  CAS  Google Scholar 

  11. Bergmeyer HU. Methods of Enzymatic Analysis. New York: Academic Press, 1965. (ATP, p543-551; ADP and AMP, p573–577; pyruvate, and β-hydroxybutyrate, p1836–1843).

    Google Scholar 

  12. Williamson DH, Lund PA, Krebs HA. The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Biochem J 1967; 103: 514–527.

    PubMed  CAS  Google Scholar 

  13. Kamiyama Y, Takeda H, Ohshita H, Nambu H, Yamamoto M, Kimura K, Ozawa K, Honjo I. Hepatic metabolic changes following energy deprivation by ammonia in patients and rabbits with jaundice. Surg Gynecol Obstet 1977; 145: 33–40.

    PubMed  CAS  Google Scholar 

  14. Jolly PC, Foster JH. Hepatic inflow stasis. Surgery 1963; 54: 45–55.

    Google Scholar 

  15. Hall RR. Hyperkalemia following temporary occlusion of the portal vein and hepatic artery. Br J Surg 1972; 59: 125–128.

    PubMed  CAS  Google Scholar 

  16. Chen KR, Abrams J, Serroni A, Martin JT, Farber JL. Aceelerated phospholipid degradation and associated membrane dysfunction in irreversible, ischemic liver cell injury. J Biol Chem 1978; 253: 4809–4817.

    Google Scholar 

  17. Backlund WM, Stevens TJ, Hamit CHF, Jordan GL Jr. Hepatic ischemia in dogs. JAMA 1965; 194: 1116–1118.

    Article  PubMed  CAS  Google Scholar 

  18. Nolan JP, O'Connel CJ. Vascular response in the isolated rat liver. J Exptl Med 1965; 122: 1063–1073.

    Article  CAS  Google Scholar 

  19. Holper L, Olcay I, Kitahama A, Miller RH, Brettschneider, L., Drapanas, T., Trejo, R.A., Di Luzio, N.R. Effect of ischemia on hepatic parenchymal and reticuloendothelial function in the baboon. Surgery 1974; 46: 423–432.

    Google Scholar 

  20. Lee JB, Vance VK, Cahill GF Jr. Metabolism of C14-labeled substrates by rabbit kidney cortex and medulla. Am J Physiol 1962; 203: 27–36.

    PubMed  CAS  Google Scholar 

  21. Kaufman CF, Bergman EN. Renal glucose, free fatty acid, and ketone body metabolism in the unanesthetized sheep. Am J Physiol 1971; 221: 967–972.

    PubMed  CAS  Google Scholar 

  22. Nelimarkka, O, Halkola L, Niinikoski J. Effect of graded hemorrhage on renal cortical perfusion in dogs. Am J Surg 1981; 141: 235–239.

    Article  PubMed  CAS  Google Scholar 

  23. Krebs HA, Wallace PG, Freedland RA. Rates of ketone body formation in the perfused rat liver. Biochem J 1969; 112: 595–600.

    PubMed  CAS  Google Scholar 

  24. Weidemann MJ, Krebs, HA. The fuel of respiration of rat kidney cortex. Biochem J. 1969; 112: 149–166.

    PubMed  CAS  Google Scholar 

  25. Tanaka J, Ozawa K, Tobe T. Significance of blood ketone body ratio as an indicator of hepatic cellular energy status in jaundiced rabbits. Gastroenterol 1979; 76: 691–696.

    CAS  Google Scholar 

  26. Ukikusa M, Ozawa K, Shimahara Y, Asano M, Nakatani T, Tobe T. Changes in blood ketone body ratio. Their significance after major hepatic resection. Arch Surg 1981; 116: 781–785.

    PubMed  CAS  Google Scholar 

  27. Lehninger AL, Sudduth HC, Wise JB. D-β-hydroxybutyric dehydrogenase of mitochondria. J. Biol Chem 1960; 235: 2450–2455.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamamoto, M., Shimahara, Y., Ozawa, K. et al. Relationship of deranged energy metabolism in liver and kidney to arterial ketone body ratio following liver ischemia in rats. The Japanese Journal of Surgery 14, 52–60 (1984). https://doi.org/10.1007/BF02469604

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02469604

Key Words

Navigation