Skip to main content
Log in

Hydrogen and flakes in steel

  • Theory
  • Published:
Metal Science and Heat Treatment Aims and scope

Abstract

Flakes are special discontinuities in steel parts that have the form of silver-colored spots on fracture surfaces or thin hair-like cracks on a ground and etched template. They appear and grow after a considerable incubation period, often in the operation of the part, which makes them a dangerous defect. Depending on the dimensions, number, and position in the metal, flakes can decrease the toughness and ductility of steel to zero and reduce markedly the service life of steel parts and structures, causing unexpected and serious failures. The present review briefly generalizes recent works devoted to the formation of flakes in steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Shapovalov and V. V. Trofimenko,Flakes and Control of Hydrogen in Steel [in Russian], Metallurgiya, Moscow (1987).

    Google Scholar 

  2. Yu. A. Bashnin, V. N. Tsurkov, and V. M. Korovina,Heat Treatment of Large Parts and Semifinished Products in Metallurgical Plants [in Russian], Metallurgiya, Moscow (1985).

    Google Scholar 

  3. V. Ya. Dubovoi,Flakes in Steel [in Russian], Metallurgizdat, Moscow (1950).

    Google Scholar 

  4. D. Ya. Povolotskii and A. N. Morozov,Hydrogen and Flakes in Steel [in Russian], Metallurgizdat, Moscow (1959).

    Google Scholar 

  5. P. V. Sklyuev,Hydrogen and Flakes in Large Forgings [in Russian], Mashgiz, Moscow (1963).

    Google Scholar 

  6. A. N. Morozov,Hydrogen and Nitrogen in Steel [in Russian], Metallurgiya, Moscow (1968).

    Google Scholar 

  7. P. V. Gel'd, R. A. Ryabov, and É. S. Kodes,Hydrogen and Imperfections of Metal Structure [in Russian], Metallurgiya, Moscow (1979).

    Google Scholar 

  8. I. A. Novokhatskii, V. Ya. Kozhukhar', O. N. Romanov, et al., “A study of the kinetics of thermal desorption of hydrogen from metals of the iron group,”Izv. Vuzov. Chern. Metal., No. 3, 19–23 (1991).

    Google Scholar 

  9. O. N. Romanov, I. A. Novokhatskii, N. G. Bykovskii, et al., “Flake sensitivity of alloyed structural steels produced by various methods,”Izv. Vuzov. Chern. Metal., No. 5, 19–23 (1992).

    Google Scholar 

  10. V. P. Levchenko and V. A. Gol'tsov, “A laboratory method for determining the relative flake sensitivity of steels,” in:Physical Properties of Alloys, No. 167 [in Russian], UPI, Sverdlovsk (1968), pp. 31–34.

    Google Scholar 

  11. R. G. Muradova, L. V. Samoilenko, V. A. Gol'tsov, and A. I. Ivanov, “A study of the properties and the susceptibility to flake formation in steel U8A from the original charge,”Izv. Akad. Nauk SSSR, Metally, No. 4, 125–126 (1988).

    Google Scholar 

  12. V. I. Grigorkin, S. V. Zemskii, A. V. Grigorkin, et al.,Hydrogen Embrittlement of Low-Carbon Low-Alloy Steels, Deposited in Chermetinformatsiya 30.03.87 No. 3895-chm87 [in Russian], Izd. Lipetsk. Politekhn. Inst., Lipetsk (1987).

    Google Scholar 

  13. B. I. Medovar, I. I. Gasik, and Ch. D. Ismailov, “Increasing the hydrogen resistance, impact toughness, and machinability of carbon steel by modifying it with selenium or tellurium,”Probl. Spets. Élektrometal., No. 1, 71–73 (1989).

    Google Scholar 

  14. I. I. Gasik, Ch. D. Ismailov, V. V. Trofimenko, et al., “Nature of inclusions and hydrogen resistance of carbon steel modified by selenium or tellurium,”Izv. Vuzov. Chern. Metal., No. 9, 52–56 (1988).

    Google Scholar 

  15. V. Ya. Kozhukhar', I. A. Novokhatskii, O. N. Romanov, and N. G. Bykovskii, “Effect of the method of production on the flake sensitivity of steels,” in:Diffusion-Cooperative Phenomena in Metal-Hydrogen Isotope Systems, Coll. Inf. Mat. 1st Int. Seminar “Metal-Hydrogen-92,” Part 1 [in Russian], Donetsk (1992), pp. 106–107.

  16. V. Ya. Kozhukhar', I. A. Novokhatskii, and O. N. Romanov, “Flake sensitivity of ESR structural steels remelted with various fluxes,” ibid. in:Diffusion-Cooperative Phenomena in Metal-Hydrogen Isotope Systems, Coll. Inf. Mat. 1st Int. Seminar “Metal-Hydrogen-92,” Part 1 [in Russian], Donetsk (1992), pp. 106–107.

  17. V. Yu. Slyusarev, V. A. Kharchenko, A. V. Gol'tsov, and A. V. Kharchenko, “Effect of the season on the hydrogen content in sttels ShKh15 and ShKh15SG,” ibid. in:Diffusion-Cooperative Phenomena in Metal-Hydrogen Isotope Systems, Coll. Inf. Mat. 1st Int. Seminar “Metal-Hydrogen-92,” Part 1 [in Russian], Donetsk (1992), pp. 105–106.

  18. P. Li, A. Xian, Y. Wang, et al., “Flakes and hydrogen content in steel U71Mn for large rails,”Jinshu Xuebao—Acta Met. Sin.,21(10), A445-A448 (1992).

    Google Scholar 

  19. R. G. Muradova, A. V. Gol'tsov, G. D. Umanskaya, et al., “Effect of hydrogen on the mechanical properties and flake formation in steel 30KhGSA,”Izv. Vuzov. Chern. Metal., No. 1, 71–73 (1991).

    Google Scholar 

  20. K. Datao, L. Zhutang, and Z. Jiaquing, “A study on hydrogen-induced embrittlement of large cold roller steel 9Cr2Mo,” in:Heat Treat. and Technol. Surface Coat.: New Process. and Appl. Exper., Proc. 7th Int. Congr. Heat Treat. Mater., Vol. 3 [in Russian], Moscow (1990), pp. 159–168.

  21. E. R. Schiapparelli, “Effect of hard inclusions on susceptibility to hydrogen damage,”Mater. Perform.,27(2), 21–25 (1988).

    Google Scholar 

  22. V. M. Dekanenko,Effect of the Structure on the Mobility of Hydrogen in Steel, Dep. in Chermetinformatsiya 20.02.87, No. 3845-chm87 [in Russian], Izd. Politekhnich. Inst., Donetsk (1987).

    Google Scholar 

  23. V. M. Dekanenko,Delayed Self-Fracture in Hydrogen-Charged Structural Steels, Dep. in Chermetinformatsiya 20.02.87, No. 3846-ch87 [in Russian], Izd. Politekhnich. Inst., Donetsk (1987).

    Google Scholar 

  24. B. I. Voronenko and E. P. Moskvichev, “Retained austenite and its nature,” in:Advances in the Field of Metal Science and Heat Treatment of Metals, Abstr. 9th Ural School of Heat-Treatment Specialists [in Russian], Sverdlovsk (1985), pp. 14–18.

  25. B. I. Voronenko,Acoustic Emission in Metals Science, Dep. in VINITI 16.06.80, No. 2390-80Dep [in Russian], GGU, Gor'kii (1980).

    Google Scholar 

  26. B. I. Voronenko, “Acoustic emission in phase transformations in alloys,”Metalloyed. Term. Obrab. Met., No. 8, 30–36 (1982).

    Google Scholar 

  27. M. E. M. Koch,Untersuchungen zum Einfluss des Gefuge-und Oberflächenzustands auf die Wasserstoffversprödung von Stählen under Einbeziehung der Schallemissionsanalyse. Diss. Dokt. Maschinenw, Techn. Univ., München (1986).

    Google Scholar 

  28. M. A. Shtremel', V. A. Volkov, N. K. Mochalin, et al., “Formation temperature and growth kinetics of flakes in steel 35KhN3MFA,”Izv. Vuzov, Chern. Metal., No. 2, 114–118 (1977).

    Google Scholar 

  29. M. A. Shtremel', A. A. Knyazev, and A. G. Libinson, “Kinetics of flake growth,”Fiz. Met. Metalloved.,54(4), 804–805 (1982).

    Google Scholar 

  30. A. E. Andreikiv, N. V. Lysak, V. R. Skal'skii, et al., “Hydrogen embrittlement of metals and alloys and its acoustic-emission monitoring,”Fiz.-Khim. Mekh. Mater.,28(4), 63–69 (1992).

    CAS  Google Scholar 

  31. M. A. Shtremel' and A. A. Knyazev, “Kinetics of the development of grain-boundary cracks caused by hydrogen,”Fiz. Met. Metalloved.,62(4), 645–651 (1986).

    Google Scholar 

  32. N. K. Mochalin, A. S. Kuznetsov, M. A. Shtremel', and V. A. Volkov, “Structure of flakes in steel 35KhN3MFA,”Izv. Vuzov, Chern. Metal., No. 9, 127–130 (1977).

    Google Scholar 

  33. V. I. Makhnenko and T. G. Ryabchuk, “Calculating the pressure created by hydrogen in microvoids in the metal of a weld and the zone of thermal effect,”Avtomatich. Svarka, No. 4(385), 1–5 (1985).

    Google Scholar 

  34. V. M. Dekanenko and E. I. Pushenko, “Effect of hydrogen on the kinetics of the decomposition of supercooled austenite and the flake sensitivity of steel 30KhGSA,”Izv. Akad. Nauk SSSR, Metally, No. 4, 94–99 (1979).

    Google Scholar 

  35. M. I. Eremina and V. M. Dekanenko, “Effect of isothermal hardening on the kinetics of hydrogen emission in steel 40KhN,”Fiz. Khim. Obrab. Mater., No. 1, 82–86 (1977).

    Google Scholar 

  36. V. I. Shapovalov and V. Yu. Karpov, “Effect of hydrogen on the polymorphic transformation in metals,” in:Strongly Excited States in Crystals [in Russian], Izd. SO AN SSSR, Tom. Nauch. Tsentr, Tomsk (1991), pp. 133–141.

    Google Scholar 

  37. B. A. Apaev, S. A. Madyanov, and B. I. Voronenko, “A study of the chemical microinhomogeneity of solid solutions of chromium and nickel in iron,” in:Solid-State Physics and Electronics, No. 4 [in Russian], Izd. Udmurt. Univ., Izhevsk (1981), pp. 64–70.

    Google Scholar 

  38. V. E. Permitin, A. L. Golovanov, and L. P. Kazanskii, “Simulating structural transformations in cooling of steels of pearlitic and bainitic classes,” in:Improving the Quality of Manufacturing Processes in the Ship-Building Industry, Coll. of Works of GIIVT, Issue 228 [in Russian], Gor'kii (1987), pp. 9–19.

  39. V. E. Permitin and A. L. Golovanov, “On the redistribution of hydrogen in the γ→α transformation in steel,”Metalloved. Term. Obrab. Met., No. 10, 2–6 (1988).

    Google Scholar 

  40. V. E. Permitin and A. L. Golovanov, “On the redistribution of hydrogen in phase transformations in steel,”Upravl. Stroen. Otlivok Slitkov, No. 6, 55–58 (1989).

    Google Scholar 

  41. V. E. Permitin, A. L. Golovanov, and A. B. Burovkin, “On the mechanism of flake formation in steels,”Metalloved. Term. Obrab. Met., No. 8, 4–5 (1991).

    Google Scholar 

  42. Yu. A. Bashnin and É. B. Mernik, “Special features of preliminary heat treatment of large forgings,” in:Advances in the Field of Metal Science and Heat Treatment [in Russian], Izd. Perm. Politekhn. Inst., Perm (1985), pp. 27–36.

    Google Scholar 

  43. Yu. A. Bashnin and É. B. Mernik, “An energy-saving technology for prelininary heat treatment of large forgings,”Metalloved. Term. Obrab. Met., No. 9, 41–45 (1988).

    Google Scholar 

  44. É. B. Mernik, Yu. A. Bashnin, and V. M. Ivanova, “Ways for optimizing antiflake treatment of steel parts,” in:Diffusion-Cooperative Phenomena in Metal-Hydrogen Isotope Systems, Coll. Inf. Mater. 1st Int. Seminar “Metal-Hydrogen-92,” Part 1 [in Russian], Donetsk (1992), pp. 103–104.

  45. B. I. Voronenko and E. P. Moskvichev, “Retained austenite and its nature,” in:Advances in the Field of Metal Science and Heat Treatment [in Russian], Izd. Perm. Politekhn. Inst., Perm (1985), pp. 14–18.

    Google Scholar 

  46. R. G. Muradova, V. A. Gol'tsov, L. I. Smirnov, and V. A. Zakharov, “Kinetics of hydrogen removal from massive cylindrical specimens,”Izv. Vuzov, Chern. Metal., 42–44 (1989).

  47. V. I. Shapovalov, M. I. Staroseletskii, V. V. Trofimenko, and N. V. Antipova, “Optimum regime of antiflake treatment for steel race parts,” in:Improving the Quality of Heat Treatment of Rolled Stock [in Russian], Metallurgiya, Moscow (1986), pp. 70–71.

    Google Scholar 

  48. V. V. Trofimenko, V. Yu. Karpov, N. T. Vistrovskii, and S. G. Cherezov, “A study of hydrogen behavior in metal in the production of rail steel and rails,” in:Problems of Metallurgical Production, Issue 101 [in Russian], Tekhnika, Kiev (1990), pp. 19–24.

    Google Scholar 

  49. S. B. Vikhirev and A. M. Shkatova, “Heat treatment of large rotor preforms,”Metalloved. Term. Obrab. Met., No. 8, 46–47 (1989).

    Google Scholar 

  50. “USSR Inventor's Certificate No. 1576577, MKI C21D 1/56,”Byul. Izobret., No. 25 (1990).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 11, pp. 12–18, November, 1997.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voronenko, B.I. Hydrogen and flakes in steel. Met Sci Heat Treat 39, 462–470 (1997). https://doi.org/10.1007/BF02469113

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02469113

Keywords

Navigation