Advertisement

Chromatographia

, Volume 49, Supplement 1, pp S49–S55 | Cite as

Packing and stationary phase design for capillary electroendosmotic chromatography (CEC)

  • Th. Adam
  • S. Lüdtke
  • K. K. Unger
Originals

Summary

Reversed-phase stationary phases based on porous silica beads in the range 0.2–3 μm have been prepared to study the dependency of electroosmotic flow (EOF) on particle diameter. Additionally, the influence of the mobile phase composition, i.e. organic modifier content, pH of buffer solution and concentration of buffer salt, on the magnitude of the electroosmotic flow velocity has been investigated. To perform separations in an aqueous acidic mobile-phase, mixed mode stationary phases containing both alkyl chains and strong cationexchange groups have been applied.

Key Words

Capillary electrochromatography Electroosmotic flow Submicron silica beads Mixed mode phases 

References

  1. [1]
    M. Dittmann, G. Rozing, K. Wienand, F. Beck, LC GC13, No. 10, 800 (1995).Google Scholar
  2. [2]
    M. Dittmann, G. Rozing, G. Ross, Th. Adam, K. K. Unger, J. Capillary Electrophoresis5, 201 (1997).Google Scholar
  3. [3]
    H. Engelhardt, S. Lamotte, F. T. Hafner, American Laboratory30, 40 (1998).Google Scholar
  4. [4]
    B. Behnke, E. Grom, E. Bayer, J. Chromatogr.716, 207 (1995).CrossRefGoogle Scholar
  5. [5]
    J. H. Knox, I. H. Grant, Chromatographia32, 317 (1991).CrossRefGoogle Scholar
  6. [6]
    R. M. Seifar, W. T. Kok, J. C. Kraak, H. Poppe, Chromatographia46, 131 (1997).Google Scholar
  7. [7]
    R. Dadoo, C. Yan, R. Zare, LC GC15, 630 (1997).Google Scholar
  8. [8]
    L. Colon, A. M. Fermier, J. Microcolumn Separation10, 439 (1998).CrossRefGoogle Scholar
  9. [9]
    M. Dittmann, G. Rozing, J. Microcolumn Separation9, 399 (1997).CrossRefGoogle Scholar
  10. [10]
    N. W. Smith, K. D. Altria, C. H. Turnbull, Chromatographia46, 664 (1997).Google Scholar
  11. [11]
    W. Stöber, A. Fink, E. Bohn, J. Colloid Interface Sci.26, 62 (1968).CrossRefGoogle Scholar
  12. [12]
    C. Kaiser, K. K. Unger, Patent Application No. P19530031.J.Google Scholar
  13. [13]
    K. Lork, J. Kinkel, K. K. Unger, J. Chromatogr.325, 199 (1986).CrossRefGoogle Scholar
  14. [14]
    S. Lüdtke, Th. Adam, K. K. Unger, J. Chromatogr.768, 229 (1997).CrossRefGoogle Scholar
  15. [15]
    J. H. Knox, I. H. Grant, Chromatographia24, 135 (1987).Google Scholar
  16. [16]
    G. Choudhary, C. Horvath, J. Chromatogr.781, 161 (1997).CrossRefGoogle Scholar
  17. [17]
    A. S. Rathore, C. Horvath, J. Chromatogr.781, 185 (1997).CrossRefGoogle Scholar
  18. [18]
    C. Schwer, E. Kenndler, Anal. Chem.63, 1801 (1991).CrossRefGoogle Scholar
  19. [19]
    J. G. Dorsey, A. S. Lister, P. B. Wright, Analytical Chemistry69, 3251 (1997).CrossRefGoogle Scholar
  20. [20]
    Q. H. Wan, J. Chromatogr.782, 181 (1997).CrossRefGoogle Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 1999

Authors and Affiliations

  • Th. Adam
    • 1
  • S. Lüdtke
    • 1
  • K. K. Unger
    • 1
  1. 1.Institut für Anorganische und Analytische ChemieJohannes Gutenberg-UniversitaetMainzGermany

Personalised recommendations