Skip to main content
Log in

Two alternatives of magnetic cumulation

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

This paper deals with phenomena leading to a considerable increase in magnetic field and energy density during compression of a magnetic flux trapped by a conducting shell and joint deformation of a magnetic field and material. The main features and merits of these two alternative schemes of magnetic cumulation are discussed. A comparison is made between the classical and schock-wave schemes of magnetic compression in a material with a phase transition from a nonconducting to a conducting state. The possibility of magnetic-energy cumulation during stretching of magnetic field line by a transverse flow of a conducting material is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Lavrent’ev, “Shaped charge principles,”Usp. Mat. Nauk.,12, No. 4, 42–56 (1957).

    Google Scholar 

  2. E. I. Zababakhin and I. E. Zababakhin,Phenomena of Unlimited Cumulation [in Russian], Nauka, Moscow (1988).

    Google Scholar 

  3. A. I. Pavlovskii, “A. D. Sakharov and magnetic cumulation,” in:High Energy Densities (collected scientific papers) [in Russian], Inst. of Exp. Phys., Sarov (1997), pp. 421–432.

    Google Scholar 

  4. C. M. Fowler, W. B. Garn, and R. S. Caird, “Production of very high magnetic fields by implosion,”J. Appl. Phys.,31, No. 3, 588–594 (1960).

    Article  ADS  Google Scholar 

  5. A. I. Bykov, M. I. Dolotenko, A. A. Karpikov, et al., “Generation of ultrastrong magnetic fields by implosion and studies on solid-state physics in magnetic fields of the 10-Megagauss range,” in. Materials Applied for the State Prize of Russia for 1999 in the Field of Science and Engineering, Inst. of Exp. Phys., Sarov (1999), p. 54.

    Google Scholar 

  6. E. I. Bichenkov, N. G. Skorobogatykh, and A. M. Trubachev, USSR Inventor’s Certificate No. 762706, “Magnetocumulative generator,” No. 2708486/24-25, Issued 05.16.80; Priority 11.30.78.

  7. E. I. Bichenkov, S. D. Gilev, and A. M. Trubachev, “MC generators using transition of a semiconducting material into a conducting state”Prikl. Mekh. Tekh. Fiz., No. 5, 125–129 (1980).

    Google Scholar 

  8. K. Nagayama, “New method of magnetic flux compression by means of the propagation of shock induced metallic transition in semiconductor,”Appl. Phys. Lett.,38, No. 2, 109–116 (1981).

    Article  ADS  Google Scholar 

  9. E. I. Bichenkov and E. P. Matochkin, “Magnetic field in a moving cylindrical conductor whose velocity is proportional tor −1,”,Prikl. Mekh. Tekh. Fiz., No. 5, 20–29 (1973).

    Google Scholar 

  10. E. I. Bichenkov, “Explosive magnetocumulative generators” Doctoral Dissertation in Phys.-Math. Sci., Novosibirsk (1980), p. 306.

  11. E. I. Bichenkov, “Investigation of magnetic cumulation,” Candidate’s Dissertation in Phys.-Math. Sci., Novosibirsk (1965), p. 144.

  12. L. D. Landau and E. M. Lifshits,Electrodynamics of Continuous Media [in Russian], Gostekhteoretizdat, Moscow (1957).

    MATH  Google Scholar 

  13. A. D. Sakharov, “Explosive magnetic generators,”Usp. Fiz. Nauk,88, No. 4, 725–734 (1966).

    Google Scholar 

  14. Megagauss Physics and Technology: Proc. of the II Int. Conf. on Megagauss Magnetic Field Generation and Related Topics (Washington, May 29–June 1, 1979), Plenum Press, New York-London (1980).

  15. V. M. Titov and G. A. Shvetsov (eds.),Ultrahigh Magnetic Fields. Physics. Technology. Applications [in Russian], Nauka, Moscow (1984).

    Google Scholar 

  16. Megagauss Technology and Pulsed Power Applications: Proc. of the IV Int. Conf. on Megagauss Magnetic Field Generation and Related Topics (Santa Fe, U.S.A., July 14–17, 1986), Plenum Press, New York-London (1986).

  17. V. B. Yakubov, “Development of the idea of magnetic cumulation at the Institute of Experimental Physics,” in:High Energy Densities (collected scientific papers) [in Russian], Inst. of Exp. Phys., Sarov (1997), pp. 435–445.

    Google Scholar 

  18. A. I. Pavlovskii, A. I. Bykov, and M. I. Dolotenko, “Cumulation of ultrastrong magnetic fields”, pp. 446–468.

    Google Scholar 

  19. V. N. Mokhov, R. F. Trunin, V. M. Gorbachev, and L. A. Il’kaev (eds.),High Energy Densities (collected scientific papers) [in Russian], Inst. of Exp. Phys., Sarov (1997), p. 572.

    Google Scholar 

  20. B. A. Boyko, A. I. Bykov, M. I. Dolotenko, et al., “Generation of magnetic fields above 2000 T with the cascade magneto-cumulative generator MC-1,” in: Abstr. of the VIII Int. Conf. on Megagauss Magnetic Fields Generation and Related Topics (Tallahassee, Florida, October 18–23, 1998), Tallahassee (1998), p. 149.

  21. M. N. Bystrov, A. S. Druzhinin, V. G. Kuchinskii, et al., “Electronic compression generator”, in: Abstracts of II All-Union Conf. on Engineering Problems of Fusion Reactors (Leningrad, June 28–30 1977), Vol. 3, Inst. of Electrophys. Apparatus, Leningrad (1977), pp. 39–42.

    Google Scholar 

  22. S. V. Fedorov, A. V. Babkin, and V. I. Kolpakov, “Possibility of generating strong magnetic fields in conducting materials by the action of high-velocity penetrators,”Prikl. Mekh. Tekh. Fiz.,41, No. 3, 13–18 (2000).

    MATH  Google Scholar 

  23. E. I. Bichenkov, S. D. Gilev, and A. M. Trubachev, “Shock-wave MC generators,” in: V. M. Titov and G. A. Shvetsov (eds.),Ultrahigh Magnetic Fields. Physics. Technology. Applications [in Russian], Nauka, Moscow (1984), pp. 88–93.

    Google Scholar 

  24. E. I. Bichenkov, S. D. Gilev, A. M. Ryabchun, and A. M. Trubachev, “Shock-wave method for generation of megagauss magnetic fields,” in:Proc. of the IV Int. Conf. on Megagauss Magnetic Fields Generation and Related Topics (Santa Fe, U.S.A., July 14–17, 1986), Plenum Press, New York-London (1986). pp. 89–105.

    Google Scholar 

  25. K. Nagayama and T. Mashimo, “Explosive-driven magnetic flux cumulation by the propagation of shock-compression region in highly porous metal powders,”J. Appl. Phys.,61, No. 10, 4730–4735 (1987).

    Article  ADS  Google Scholar 

  26. H. Almstrom, G. Bjarnholt, S. M. Goldberg, and M. A. Liberman, “On the methods of generation of ultrahigh pulsed magnetic field,” in: Proc. of the VII Int. Conf. on Megagauss Magnetic Fields Generation and Related Topics, Sarov (Arzamas-16), August 5–10, 1996, Part 1, Inst. of Exp. Phys., Sarov (1996), pp. 144–151.

    Google Scholar 

  27. K. Nagayama and T. Murakami, “Magnetohydrodynamic study of the interaction of magnetic flux with high-pressure shock waves in metal powder,” in:Proc. of the 16th Int. Symp. on Shock Tubes and Shock Waves Aachen, West Germany, 26–31 July, 1987), VCH, Aachen (1987), pp. 881–887.

    Google Scholar 

  28. A. A. Barmin, O. A. Mel’nnik, A. B. Prishchepenko, et al., “Losses of electromagnetic energy in compression of a magnetic field by a jump of the second kind,”Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 6, 166–170 (1988).

    Google Scholar 

  29. E. I. Bichenkov, S. D. Gilev, A. M. Ryabchun, and A. M. Trubachev, “Compression of a magnetic field by shock-induced conduction waves in highly porous materials”,Prikl. Mekh Tekh. Fiz.,37, No. 6, 15–25 (1996).

    Google Scholar 

  30. K. H. Oh and P. A. Person, “Equation of state for extrapolation of high-pressure shock Hugoniot data,”J. Appl. Phys.,65, No. 10, 3352–3356 (1989).

    Article  Google Scholar 

  31. S. E. Nyholm, “Numerical simulation of shock wave driven magnetic flux compression with MFCICS,” Sci. Report No. FOA-R-98-00776-612-SE (1998).

  32. E. I. Bichenkov, “Structure of a stationary current wave produced by a shock wave in a conducting material with a transverse magnetic field,”Fiz. Goreniya Vzryva,33, No. 4, 113–127 (1997).

    Google Scholar 

  33. E. I. Bichenkov, “Electromagnetic field and current waves generated by a shock wave entering a conductor with a transverse magnetic field,”Prikl. Mekh. Tekh. Fiz.,38, No. 2, 19–25 (1997).

    MATH  Google Scholar 

  34. E. I. Bichenkov, “Shock wave driven flux compression technique”, in:Abstr. of the VIII Int. Conf. on Megagauss Magnetic Field Generation and Related Topics (Tallahassee, U.S.A., October 18–23, 1998), Tallahassee (1988), p. 151.

  35. E. I. Bichenkov, “Electrodynamic effects accompanying propagation of current-carrying shock waves in a transverse magnetic field,”Fiz. Goreniya Vzryva (in press).

  36. A. B. Prishchepenko and V. P. Zhitnikov, “Electromagnetic weapons in air defense,”Air Defense Herald., No. 7, 51–55 (1993).

    Google Scholar 

  37. L. Altgilbers, I. Merritt, M. Brown, et al., “Compact explosive driven sources of microwaves: test results,” in:Abstr. of the VIII Int. Conf. on Megagauss Magnetic Field Generation and Related Topics (Tallahassee, U.S.A., October 18–23, 1998), Tallahassee (1998), p. 140.

  38. I. K. Kikoin (ed.),Tables of Physical Quantities, Handbook, Atomizadt, Moscow (1976).

    Google Scholar 

Download references

Authors

Additional information

Lavrent’ev Institute of Hydrodynamics, Russian Academy of Sciences, Novosibirsk 630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 41, No. 5, pp. 32–47, September–October, 2000.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bichenkov, E.I. Two alternatives of magnetic cumulation. J Appl Mech Tech Phys 41, 792–805 (2000). https://doi.org/10.1007/BF02468724

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02468724

Keywords

Navigation